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Abstract6

7

Virus diseases constitute one of the most important limiting factors in horticultural pro-8

duction. Cultivation of horticultural species under organic management has increased in9

importance in recent years. However, the sustainability of this new production method10

needs to be supported by scientific research, especially in the field of virology. We11

studied the prevalence of three important virus diseases in agroecosystems with regard12

to its management system: organic versus non-organic, with and without greenhouse.13

Prevalence was assessed by means of a Bayesian correlated binary model which con-14

nects the risk of infection of each virus within the same plot and was defined in terms of15

a logit generalized linear mixed model (GLMM). Model robustness was checked through16

a sensitivity analysis based on different hyperprior scenarios. Inferential results were17

examined in terms of changes in the marginal posterior distributions, both for fixed and18

for random effects, through the Hellinger distance and a derived measure of sensitivity.19

Statistical results suggested that organic systems show lower or similar prevalence than20

non-organic ones in both single and multiple infections as well as the relevance of the21

prior specification of the random effects in the inferential process.22
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1. Ordinary Text27

Society is becoming increasingly concerned about environmental damage caused by28

agricultural activities. The sustainability of conventional agriculture is now being ques-29

tioned, which is prompting traditional production systemsto evolve toward production30

methods that can protect both environmental and human health (Van Bruggen, 1995;31

Bengtsson et al., 2005).32

In recent decades, organic agriculture has grown rapidly incomparison with other33

agricultural systems. The adoption of these new agricultural practices has brought about34

the need to compare low-input and conventional systems to verify whether agroecosys-35

tem sustainability can be achieved (Bettiol et al., 2004). Despite the emergence of or-36

ganic agriculture systems, the literature on their effectsand interactions is scarce and37

insufficient, above all in the field of virology (Tomlinson, 1987). Diseases caused by38

viruses constitute a major threat to the large-scale production of crops worldwide, caus-39

ing serious economic losses and undermining sustainability (Gallitelli , 2000). Assessing40

the risk of infection should therefore be a priority in the study of the epidemiology of41

such virus diseases.42

The ecological and epidemiological factors that determinevirus infections in veg-43

etable crops are diverse and little is known about them. The sources and spread of44

viruses, together with certain agricultural and horticultural practices, have a strong in-45

fluence on their prevalence (Hanssen et al., 2010). In this respect, studies on the risk of46

virus infections need to characterize the agroecosystem balance as well as understand47

the complex relationships between organisms (plants, pathogens, and vectors) and envi-48
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ronment (Serra et al., 1999).49

The main scientific question addressed in this paper is the study and comparison of50

the risk of different virus infections in tomato and pepper plots characterized by their51

agroecosystem. Specifically, we focus on the detection and quantification of the ef-52

fects associated with organic management. The agroecosystem of each plot is defined53

through a set of covariates containing information on its management conditions and al-54

titude. Agroecosystems are dynamic entities (Finley et al., 2011) with complex sources55

of uncertainty and hierarchies. FollowingThornley and France(2007), the estimation of56

the infection risk of different viruses within the same plotwould require the modelling57

of not only a suitable set of covariates but also the inclusion of some probabilistic terms58

which connect the different observations of the same individidual.59

The inclusion of dependence and/or correlation relationships among variables, re-60

sponse and/or covariates, is usually done by means of randomeffects whose stochastic61

nature adds much more probability to the structure of the model. Bayesian reasoning62

provides a natural environment for analysing them mainly because of the own concep-63

tion of the Bayesian probability theory, which specifies allthe uncertainties in the model64

through probabilistic elements (Loredo, 1990). Some applied papers that illustrate the65

benefits of hierarchical Bayesian models in biometrics scenarios areAlvares et al.(2016)66

in agriculture,Paradinas et al.(2015) in fisheries,Paciorek et al.(2009) in forestry, and67

Clark et al.(2007) in ecology.68

A Bayesian binary correlated model under the generalized linear mixed models69

(GLMM) specification was considered to perform a regressionanalysis of the prevalence70

of the different viruses. Random effects were used to correlate the risk of infection of71

each virus in the same plot and quantify the intra-plot ability to be infected. Robustness72

in hierarchical Bayesian models is a major concern as it can be affected by an inappro-73

priate choice of the hyperprior distributions for hyperparameters (Lambert et al., 2005;74
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Gelman, 2006; Roos and Held, 2011; Roos et al., 2015). To this effect, the sensitivity75

of the modelling was tested using several specifications forthe hyperprior distribution76

of the random effects scale parameter. A general measure based on the Hellinger dis-77

tance (Le Cam, 2012), with its calibration, was used to quantify discrepanciesin the78

subsequent posterior marginal distribution of the common regression coefficients and79

hyperparameter.80

The remainder of this article is organized as follows: Section 2 reviews the data and81

presents the formulation of the model. Section 3 reports anddiscusses the results with82

regard to multiple and single viral infections. Section 4 proposes several random effects83

specifications and analyses the robustness of the estimatedmodels through a sensitivity84

measure based on the Hellinger distance. Some concluding remarks are given in Section85

5.86

2. Viruses data and statistical modelling87

2.1. Data description88

Globally, about 30 viruses are capable of affecting the mostknown horticultural crops.89

However, despite being able to infect a wide variety of species, they usually affect90

Solanaceae species, specially tomato (Solanum lycopersicum) and pepper (Capsicum91

annuum L.). These species are two of the most common vegetable crops grown in Spain92

whose production is being seriously limited by virus diseases. There has recently been a93

considerable increase in the cultivation of these vegetables under integrated systems such94

as organic agriculture. It is therefore essential to carry out subsequent virus prevalence95

studies in order to guarantee their sustainability.96

A project under the auspices of the Valencian Institute Agricultural Research was97

conducted in the summer of 2012 in the Valencian region for this purpose. A total of98

30 plots in tomato and pepper production were selected according to their system of99

production. Each plot was evaluated in terms of its agroecosystem characterization and100
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the presence or absence of three different viral infectionsin the crops: tomato mosaic101

virus (ToMV), cucumber mosaic virus (CMV) and tomato spotted wilt virus (TSWV).102

These viruses affect both tomato and pepper crops equally, are transmitted in different103

ways, and can cause substantial economic losses. The presence of each specific virus104

infection in a plot was assumed when the virus was detected inat least one of eight105

randomly-selected plants. The enzyme-linked immunosorbent assay (ELISA) technique106

(Clark et al., 1976) was used to detect each virus.107

The assessment of the agroecosystem of each plot was determined by its manage-108

ment condition and altitude. Management condition was evaluated by classifying each109

plot as organic, non-organic with greenhouse structure, and non-organic with no green-110

house structure. These categories were defined according tothe most representative111

agroecosystems in Spanish agriculture. Organic plots differ from the non-organic ones112

in many respects, but substantial differences are related to the use of agrochemicals113

and other external inputs with important influence in pest and disease prevalence. In114

fact, some purported drawbacks related to organic agriculture include an increasing in-115

cidence of pest damage and higher risks of pest outbreaks (Letorneau and Goldstein,116

2001). All plots classified as organic complied with the current regulation and were117

certificated as such by the Organic Agriculture Committee ofthe Autonomous Govern-118

ment of València. The presence of greenhouse in non organicplots was also considered119

because is a frequent practice in non-organic systems. The use of covering protections120

suppose a physical barrier which is directly related to virus infection in the sense that121

denies insects (vector of virus transmission) acces to plants.122

Of the total of 30 plots of our study, 18 were classified as organic and 12 as non-123

organic, 5 of them with greenhouse structure. For organic plots, the proportion of in-124

fected plants with ToMV, CMV, and TSWV was 0.222, 0.167, and 0.056, respectively.125

In the case of non-organic plots with greenhouse these proportions were 0.400, 0.200,126
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and 0.200, respectively, and 0.143, 0.286, and 0.286 for non-organic plots without green-127

house. The organic plots presented a lower proportion of plants infected by CMV and128

TSWV viruses, but the prevalence of ToMV was lowest in the non-organic plots with no129

greenhouse.130

2.2. Statistical model131

We consider a logit GLMM for correlated binary responses (Ntzoufras, 2009) to model132

the Bernoulli random variableYi j which describes the presence or absence of virusj133

( j = 1 corresponds to ToMV,j = 2 to CMV, and j = 3 to TSWV) in ploti,134

(Yi j | θi j )∼ Bernoulli(θi j ),

logit(θi j ) = xxxT

iβββ j +bi , i = 1, . . . ,30,

(1)

whereθi j is the probability that virusj will be detected in ploti and represents risk of135

infection; xi is the vector of covariates;βββ j is the corresponding vector of the regression136

coefficients; and(bi | σ2
b) ∼ N(0,σb) is a normal random effect associated with plot137

i with mean zero and standard deviationσb. The three management conditions were138

coded in a sequence of two dummy variables (organic and non-organic, with and without139

greenhouse structure) to avoid overparameterization, with organic management as the140

reference category.141

Random effects capture within-plot variability and correlate prevalence among all142

viruses so that each individual virus infection is determined by its own agroecosystem143

effect and an individual effect plot which denotes its ability to be infected. They also144

provided conditional independence among the prevalence ofthe three viruses as follows145

P(Yi j = y j , j = 1,2,3 | βββ ,bi ,xxxi) =
3

∏
j=1

P(Yi j = y j | βββ j ,bi ,xxxi), (2)

wherey j ∈ {0,1}, j = 1,2,3, βββ = (βββ 1,βββ 2,βββ 2)
T, and the conditional probability that plot146
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i will be infected with virusj can be expressed as147

P(Yi j = 1 | βββ j ,bi ,xxxi) =
exp{xxxT

iβββ j +bi}
1+exp{xxxT

iβββ j +bi}
, (3)

The joint marginal distribution obtained integrating out the random effects in (4),148

P(Yi j = y j , j = 1,2,3 | βββ ,σb,xxxi) =

∫

P(Yi j = y j , j = 1,2,3 | βββ ,bi ,xxxi)N(bi | 0,σb)dbi ,

(4)

does not depend on the subject-specific random effects and can be interpreted as the com-149

mon risk infection of a generic plot from the population withthe same agroecosystem150

and altitude.151

Inference was carried out using Bayesian statistics. We therefore needed to elicit

a prior distribution for the parameters and hyperparameters to complete the Bayesian

model. We considered a prior independent default scenario with normal distributions

centered at zero and a wide variance for the regression coefficients. As previously intro-

duced, the specification of a hyperprior distribution for the random effects scale param-

eter is a challenging issue (Lambert et al., 2005; Gelman, 2006; Roos and Held, 2011;

Roos et al., 2015). Section 4 contains a sensitivity analysis of the performance of vari-

ous traditional hyperprior choices (gamma, uniform and half-normal) in our study. This

analysis led us to choose the uniform distribution Un(σb | 0,100) for the standard devi-

ation of the random effects. Consequently

π(βββ ,σb) = ∏3
j=1∏3

k=0 π(β jk)π(σb)

= ∏3
j=1∏3

k=0 N(β jk | 0,σ2 = 1000)Un(σb | 0,100) (5)

whereβββ j = (β j0,β j1,β j2,β j3)
T are the regression coefficients associated with organic,152

non-organic with and without greenhouse and altitude (in logarithmic scale) for virusj.153
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3. Results154

The posterior distributionπ(βββ ,σb | D), whereD denotes data, was approximated us-155

ing Markov chain Monte Carlo (MCMC) simulation methods withWinBUGS Software156

(Lunn et al., 2000). Random effects models, and Bayesian categorical GLMs in par-157

ticular, involve many computational difficulties (Albert and Chib, 1993). We fixed the158

number of iterations and the burn-in period with very large values to avoid strong cor-159

relation in the MCMCs samples and get a reliable sample of theposterior distribution.160

Specifically, simulation was run considering three Markov chains with 1 000 000 itera-161

tions and a burn-in period with 100 000. In addition, the chains were thinned by storing162

every 10th iteration in order to reduce autocorrelation in the saved sample and avoid163

computer memory problems.164

Trace plots of the simulated values of the chains appear overlapping one another,165

indicating stabilization. Convergence of the chains to theposterior distribution was as-166

sessed using the potential scale reduction factor,R̂, and the effective number of indepen-167

dent simulation draws, neff. In all cases, theR̂ values were equal or close to 1 and neff168

> 100, thus indicating that the distribution of the simulatedvalues between and within169

the three chains was practically identical, and that sufficient MCMC samples had been170

obtained, respectively (Gelman and Rubin, 1992).171

3.1. Management conditions172

Multiple viral infections that may result in synergisms or antagonisms are frequently173

found in nature, with unpredictable pathological consequences. Synergistic interactions174

resulting from mixed infections with two or more viruses arecommon and well docu-175

mented in plants (Garcı́a-Cano et al., 2006). Viral synergism could affect various growth176

variables such as plant height, weight, and yield (Murphy and Bowen, 2006), and in ex-177

treme cases can lead to plant death.178
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The joint posterior distribution,π(P(Yi j = y j , j = 1,2,3 | βββ ,σb,xxxi) |D), wherey j ∈179

{0,1}, of the risk infection given in (4) for a generic plot at given altitude in each of the180

management systems is the basic tool for assessing such synergisms and antagonisms.181

This posterior distribution is also the starting point for the computation of relevant con-182

ditional or marginal inferences.183

We begin by discussing some results about multiple viral infections with regard to184

plot management condition: the posterior distribution of the prevalence of the total num-185

ber of viruses in a plot and the posterior distribution of therisk of a third infection in186

plots already infected with two of the viruses. Figure 1a shows the mean of the posterior187

distribution associated to the presence of 0, 1, 2 and 3 viruses in a generic ploti located188

at 76 meters of altitude (the sample mean) with regard to its management system. Most189

of the plots have no infections, but the organic ones presentthe highest rates for plots190

without infections. Non-organic plots, with and without greenhouse, behave similarly.191

Figure 1b shows the posterior mean of the risk of a third infection in plots already192

infected with two of the viruses. Outcomes are also obtainedfor a generic ploti situ-193

ated at 76 meters of altitude (the sample mean) with regard toits management system.194

For condition ToMV in the presence of CMV and TSWV, organic and non-organic with195

greenhouse plots behave similarly with probabilities around 0.6. This is not the case196

for non-organic with no greenhouse plots, with an estimatedprobability close to 0.2.197

CMV infection given ToMV and TSWV presents homogeneous results in all manage-198

ment systems, with a higher difference among estimated probabilities of 0.167. The199

pattern for the probability of a TSWV infection in plots already infected with ToMV200

and CMV seems to be different among the management conditions: non-organic with201

no greenhouse systems shows the highest probability (0.514), followed by non-organic202

with greenhouse plots (0.316), and organic (0.172), respectively. It is difficult to detect203

a general trend on conditional infections among the different agroecosystems analysed.204
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This is a very interesting subject and surely a new study withmore data would be nec-205

essary in order to better understand them.206
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Figure 1: (a) Probability (mean of the posterior distribution) for the presence of 0, 1, 2 and 3

viruses in organic (black), non organic-green (red) and nonorganic-non green (green) manage-

ment systems. (b) Probability (mean of the posterior distribution) of the risk of a third infection

in plots already infected with two of the viruses in organic (black), non organic-green (red) and

non organic-non green (green) management systems.

207

The marginal effect of the management conditions in each virus was assessed through208

the marginal posterior distributionπ(P(Yi j = 1 | βββ ,σb,xxxi) |D). Table 1 shows a descrip-209

tive of the posterior distribution of the risk of infection for each virus and management210

conditions for a generic plot situated at a height of 76 meters (the sample median). The211

lowest risk of infection for a generic plot under organic management is for TSWV virus.212

The most relevant differences among the management conditions were found for virus213

ToMV. In contrast, virus CMV seemed the most stable. However, the organic effect was214

weaker for ToMV risk, approximately about four times the onefor TSWV virus. It is215

important to mention the great uncertainty associated to all marginal posterior distribu-216

tions in the analysis, mainly due to the combination of the reduced size of the sample and217

the usual scarce information of binary data. To this effect,a bigger experiment would be218

necessary for a more informative and objective study that allows to reach more precise219
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conclusions about the subject.220

Table 1: Summary of the posterior distribution of the risk of infection for each management

condition and virus.
221

Virus Management Mean Sd Q2.5% Q50% Q97.5%

ToMV
Organic 0.225 0.184 0.008 0.181 0.734

Non-organic, greenhouse 0.311 0.252 0.006 0.248 0.900

Non-organic, no greenhouse 0.100 0.147 0.000 0.041 0.553

CMV
Organic 0.169 0.161 0.004 0.124 0.634

Non-organic, greenhouse 0.155 0.190 0.001 0.080 0.719

Non-organic, no greenhouse 0.234 0.216 0.004 0.168 0.809

TSWV
Organic 0.057 0.093 0.000 0.026 0.309

Non-organic, greenhouse 0.174 0.203 0.001 0.095 0.764

Non organic, no greenhouse 0.253 0.223 0.005 0.189 0.831

222

Comparison of the three management systems was also quantified with the posterior223

distribution of the risk difference (RD) (Christensen et al., 2011). RD is an absolute and224

intuitive measure of association for quantifying difference between proportions associ-225

ated to an outcome of interest in two groups. It is defined in[−1,1] so thatRD= 0226

means no difference between groups,−1≤ RD< 0 that risk is greater in group 2, and227

0< RD≤ 1 the opposite.228

Figure 2 shows, for each virus, the posterior mean and 95% credible interval of the229

RDbetween organic and non-organic, with and without greenhouse, generic plots. Infor-230

mation provided by this graphic reaffirms the results in Table 1. Note that the differences231

between organic management conditions and the two non-organic conditions are clear in232

the case of TSWV infection: both posterior distributions are highly concentrated on the233

negativeRD values with associated posterior probabilities 0.764 and 0.910 when com-234

paring organic and non-organic with and without greenhousemanagement, respectively.235

For CMV infections, the results are less clear, with posterior probabilities of 0.395 and236

0.611, respectively. In the case of ToMV infection, there are few differences between237
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organic and non-organic with greenhouse conditions (posterior probability of a negative238

difference is 0.620), but a relevant probability, 0.84, that the risk of infection will be239

greater in organic than in non-organic without greenhouse.240
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ToMV CMV TSWV

Figure 2: Posterior mean and 95% credible interval of the RD between organic system in re-

lation to non organic-green (left) and non organic-no green(right) system for ToMV, CMV and

TSWV infections.

241

3.2. Altitude condition effect242

Plot altitude is a relevant epidemiological information due to its important role in shap-243

ing insect vector distributions and virus survival. The effect of altitude on the risk of244

infection is clearly negative in all viruses and therefore we can expect a decrease of the245

risk of infection as altitude increases. Figure 3a shows theposterior distribution of the246

regression coefficient associated to altitude for each virus: −0.914,−0.745 and−0.480247

are, respectively, the subsequent posterior mean of the coefficient for virus ToMV, CMV,248

and TSWV, with posterior probabilities 0.940, 0.904, and 0.768 associated to their neg-249

ative values. Note that virus ToMV is the most negatively associated with altitude. Fig-250

ure 3b shows the posterior distribution of theRDbetween two generic organic plots with251

altitudes of 16 and 604 m, the lowest and highest values of theorganic plots in the sam-252

ple. These graphics are in line with the previous comments and also indicate the less253
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important role of altitude in the risk of a TSWV infection in organic crops.254

−
3

−
2

−
1

0
1

ToMV CMV TSWV

(a)

−
0
.5

0
.0

0
.5

1
.0

ToMV CMV TSWV

(b)

Figure 3: For virus ToMV (in black), CMV (in red), and TSWV (in green): posterior mean and

95%credible interval of the regression coefficient associatedto the altitude (in logarithmic scale)

(a), and posterior distribution of the RD between a typical organic plot at altitudes 16 and 604

m (b).

255

3.3. Individual random effects256

Random effects for each plot capture the ability to be infected of individual plots, thus257

correlating the risk of infection among the viruses of each plot. Since each individual258

random effect is responsible for the differences in the estimation of the risk between259

plots managed under similar agroecosystem conditions, quantifying their contribution to260

the analysis in terms of factors and covariates is highly relevant to our understanding of261

the weight of the common and individual elements in the model.262

The mean of the posterior distribution of the standard deviation, σb, of the plot ran-263

dom effect is 0.968 with a 95% credible interval [0.046, 2.671]. In addition, we assessed264

the contribution of the random effect associated to each plot towards the conditional265

posterior distribution of the risk of infectionπ(P(Yi j = 1 | βββ ,bi ,xxxi) | D). It was esti-266

mated individually for the three viruses at the altitude of 76 meters with the purpose of267
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assessing differences in risk infection among individualsthat share the specification of268

the vector of covariatesxxxi , that is to say, plots that were managed under the same system.269

Figure 4 shows a mosaic of subfigures in which each one displays the posterior expec-270

tation of the risk of infection for each plot grouped according to management condition271

(rows) and the type of virus infection (columns).272

We can distinguish a certain stability in risk infection regarding individuals belong-273

ing to non-organic no greenhouse systems (row 3) with maximum differences among274

individuals of 0.039, 0.084 and 0.090 for ToMV, CMV and TSWV respectively. Non-275

organic with greenhouse plots (row 2) are less similar with maximum differences in risk276

infection no greater than 0.190 (ToMV). Organic plots showed the most remarkable dif-277

ferences among their individuals, with maximum differences of 0.211 for ToMV and278

0.231 for CMV. In contrast TSWV showed the opposite behaviour with a slight maxi-279

mum difference of 0.087. In conclusion, we suspect the strong relevance of the common280

elements in the model (fixed effects) in the case of non-organic and no greenhouse plots281

regardless of virus infection. On the other hand, in the caseof organic plots the weight282

of the common elements effect in the model was not so evident considering that not all283

viruses exhibited a similar tendency: ToMV and CMV risk infection varied considerably284

among individuals, but this was not the case with TSWV.285

4. Sensitivity analysis286

Bayesian GLMMs are a particular class of models for which theestimation process can287

be seriously affected by the elicitation of prior distributions for the random effects scale288

parameter (standard deviation,σb, or a one-to-one transformation of it, varianceσ2
b or289

precisionτb = 1/σ2
b ). Special attention is required in studies where the numberof groups290

is small,σb is close to zero, and/or the number of groups is large compared to the num-291

ber of observations in each group (Box and Tiao, 1992; Gelman, 2006; Roos and Held,292
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2011). This latter situation is the case of our study, withI = 30 plots and only three293

observations in each of them. An additional element that aggravates the situation is the294

sparsity of the data due to its categorical, binary condition. We conducted a sensitivity295

analysis of the posterior distribution to the specificationof several prior hyperdistribu-296

tions for the random effects scale parameter. This analysiswas based on the methodol-297

ogy developed inMcCulloch (1989), Roos and Held(2011), andRoos et al.(2015) re-298

garding the stability of the marginal posterior distribution of the regression coefficients299

of the model and the relative changes in the subsequent marginal posterior distributions300

of the random effects scale parameter.301
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Figure 4: Posterior mean of the conditional posterior distributionsassociated to

management systems organic (row 1), non organic and greenhouse (row 2) and

non organic and non greenhouse (row 3) for viruses ToMV (column1), CMV (col-

umn 2) and TSWV (column 3) obtained from a fixed altitude valueof 76 m.

302

4.1. Hyperprior distributions303

For the random effects scale parameter, different hyperprior distributions were specified304

for τb within the family of gamma, and forσb within uniform and half-normal distribu-305

tions306
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• Gamma: Ga(0.001, 0.001), Ga(0.005, 0.005), and Ga(0.05, 0.05) (Ga1, Ga2, and307

Ga3, respectively),308

• Uniform: Un(0, 100), Un(0, 55.63), and Un(0, 7.92) (Un1, Un2, and Un3), and309

• Half-normal: HN(10), HN(3.0387), and HN(0.3965) (HN1, HN2, and HN3).310

Gamma distributions were parameterized in terms of a shape and a rate parameter,311

and half-normal distributions were set according its standard deviation. Hyperdistribu-312

tions Ga1, Un1, and HN1 were considered the default choices due to their “noninfor-313

mative” nature and their common use in Bayesian applications. In addition, two other314

hyperparameter specifications within each family of hyperdistributions were contem-315

plated to assess the effect of small and medium perturbations in the hyperparameter316

specifications on posterior inferences. These hyperprior distributions were set following317

the criterion of the Hellinger distance (Le Cam, 2012). This is a symmetric and invari-318

ant measure of discrepancy between two probability distributions taking values between319

0 and 1, where the value 0 represents no divergence and 1, fulldivergence (See Ap-320

pendix 1).321

Hyperparameter values were assessed considering two reference Hellinger distance322

values, a small and a medium perturbation. This computationwas based on the analytical323

expression of the Hellinger distance between gamma, uniform and half-normal distribu-324

tions (see Appendix 1). Small perturbation was associated to a Hellinger distance of325

0.541 and medium to 0.848. Consequently, Ga2, Un2, and HN2 hyperparameteres were326

determined to obtain a Hellinger distance of 0.541 in relation to hyperdistributions Ga1,327

Un1, and HN1, respectively. Hyperparameter values for Ga3,Un3, and HN3 were se-328

lected because of their Hellinger distance, 0.848, to hyperpriors Ga1, Un1, and HN1,329

respectively.330
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Focusing on gamma hyperdistributions, Ga1 exhibits the widest range of uncertainty331

with a variance of 1000. It is frequently used in many of the examples provided with the332

WinBUGS software (Lunn et al., 2012) and shows a uniform shape for most of the range333

with a spike of probability density near zero. Ga2 and Ga3 share this shape, although334

they show lower range coverage as a consequence of their fewer variance values, 200335

and 20. Hyperprior Un1 is recommended bySpiegelhalter et al.(2004) in their book on336

clinical trials. It is a very generous distribution allowing for a great space of values due337

to its variance of 833.3. Un2 and Un3 display variance valuesof 257.84 and 5.23, and338

as such they are very different from the non-null density range. The half-normal default339

option, HN1, is a choice used inThompson et al.(1997) andRoos and Held(2011). It340

exhibits a variance of 36.3 giving a low probability to values greater than this. HN2 and341

HN3 are more informative versions, especially HN3 with a variance value of 0.06.342

We conducted nine independent inferential processes with the same data and the343

same marginal prior distributionπ(βββ ) for the regression coefficients as in (5) but varying344

marginal hyperprior distribution according to the specifications previously presented.345

4.2. Sensitivity of the regression coefficients346

We discuss sensitivity of the marginal posterior distributions of the regression coeffi-347

cients derived from the inferential processes described above. Discrepancies among the348

estimates of posterior marginal distributions were the result of alterations in the hyper-349

prior values. Hellinger distances between posterior marginal distributions approximated350

by MCMC methods were computed via expression (A.1) in Appendix 1 and imple-351

mented by means of the functionHDistNoSize in theR packagebmk (Krachey and Boone,352

2012). Furthermore, to facilitate interpretation these valueswere calibrated with regard353

to a normal distribution with variance 1 (see Appendix 2 for more details about calibra-354

tion).355

Table 2 shows the calibration of the Hellinger distance between the posterior marginal356
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distribution of the different coefficients of regression computed from the hyperpriors357

considered. In none of the comparisons the discrepancies observed were greater than the358

differences between the normal distributions N(0,1) and N(0.284,1), which reveals that359

Hellinger values are in general close to zero (see Table 4 in Appendix 2 where a calibra-360

tion of the normal mean related to its subsequent Hellinger distance is displayed). Uni-361

form distributions have the smallest discrepancies despite the existing differences among362

hyperpriors Un1, Un2, and Un3. The behaviour of half-normaldistributions was similar363

to that of the uniform distributions in the case of hyperpriors HN1 and HN2. Neverthe-364

less, inference from hyperprior HN3 exhibited the greatestdiscrepancies, surely due to365

its informative nature. Gamma showed greater discrepancies than uniform hyperpriors366

in all cases, although in none of the scenarios did these differences exceed those ob-367

tained from hyperprior HN3. Thus, the above comments enableus to conclude that our368

assumptions on the choice of hyperparameter prior distribution influences the estimates369

of the regression coefficients only to a minor extent.370

We now discuss the effect of the different hyperpriors considered on the posterior371

distribution of each regression coefficient. Figure (5) is amosaic of subfigures. Each372

subfigure displays the posterior mean of the regression coefficients of the different infer-373

ential processes conducted. The order of the points corresponds to the order in which hy-374

perpriors are presented (Ga1, Ga2, Ga3; Un1, Un2, Un3; and HN1, HN2, HN3). A great375

similarity can repeatedly be seen, in practically all coefficients and viruses, between re-376

sults from hyperpriors HN1 and HN2, and also those from the uniform hyperpriors. As377

expected, results from HN3 are very different, most likely due to its informative char-378

acteristics. Finally, posterior means from the analyses based on the gamma hyperpriors379

vary the most, indicating a greater sensitivity to parameter specification.380
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Table 2: Calibration of the Hellinger distance between the posterior marginal distribution of

the coefficients of regression associated to organic (βo), non-organic with greenhouse (βno-g),

non-organic without greenhouse (βno-ng) and altitude in logarithmic scale (βalt) computed from

hyperprior distributions Ga1 and Ga2, Ga1 and Ga3, Un1 and Un2, Un1 and Un3, HN1 and

HN2, and HN1 and HN3.

381

Virus Coeff. (Ga1,Ga2) (Ga1,Ga3) (Un1,Un2) (Un1,Un3) (HN1,HN2) (HN1,HN3)

ToMV βo 0.038 0.084 0.024 0.022 0.034 0.236

βno-g 0.032 0.068 0.019 0.019 0.035 0.197

βno-ng 0.020 0.042 0.018 0.020 0.024 0.124

βalt 0.043 0.099 0.022 0.024 0.039 0.284

CMV βo 0.033 0.068 0.023 0.021 0.034 0.201

βno-g 0.029 0.056 0.021 0.019 0.025 0.148

βno-ng 0.029 0.060 0.019 0.020 0.027 0.171

βalt 0.037 0.085 0.023 0.023 0.038 0.249

TSWV βo 0.022 0.052 0.019 0.021 0.030 0.144

βno-g 0.024 0.043 0.021 0.020 0.025 0.108

βno-ng 0.023 0.048 0.020 0.019 0.025 0.139

βalt 0.028 0.069 0.020 0.019 0.034 0.193

382

4.3. Sensitivity of the variability of the random effects383

We now discuss and assess the sensitivity of the random effects scale parameter cor-384

responding to the inferential processes described in Subsection 4.1. Figure 6 shows385

the posterior marginal distribution (mean and 95% credibleintervals) of the standard386

deviation of the random effects. It is worth noting that in the case of the gamma hyper-387

priors, the posterior marginal distributionπ(σb |D) is computed from the joint posterior388

π(βββ ,τb |D), which is based on the priorπ(βββ ,τb). The results from the uniform hyper-389

distribution are stable, since the subsequent marginal posterior distributions are virtually390

indistinguishable. The opposite occurs for results from the gamma hyperpriors, with391

very different posterior distributions greatly influencedby the spike near zero of the sub-392

sequent hyperprior. The half-normal distribution also exhibits a sensitive performance,393

with the posterior distributions from HN1 and HN2 practically equal to those from the394
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uniform distribution. As previously noted, the exception is for the posterior distribution395

from the informative HN3.396

Finally, we used a sensitivity measure developed inRoos and Held(2011) to evaluate

the relative change in the posterior marginal distributionof the random effects scale

parameter with regard to subsequent change in the prior distribution. Changes in both

prior and posterior distributions are assessed through theratio between two Hellinger

metrics in the form

S(π1,π2) =
H(π1(θ |D),π2(θ |D))

H(π1(θ),π2(θ))
,
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Figure 5: Posterior mean of the regression coefficients associated toplot categories organic

(row 1), non organic and greenhouse (row 2), non organic and non greenhouse (row 3), and

covariate altitude in logarithmic scale (row 4) for virusesToMV (column 1), CMV (column 2),

and TSWV (column 3) obtained from the full inferential process based on G1, G2 and G3 (black),

Un1, Un2 and Un3 (red) and HN1, HN2 and HN3 (green) hyperpriors.

397



Elena Lázaro, Carmen Armero and Luis Rubio 23

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Figure 6: Posterior mean and 95% credible interval forσb obtained from hyperpriors Ga1,

Ga2, and Ga3 in black, Un1, Un2, and Un3 in red, and HN1, HN2, and HN3 in green.

398

whereπ1(θ |D) andπ2(θ |D) are the subsequent posterior distributions fromπ1(θ) and399

π2(θ). Note thatS(π1,π2) only depends on the Hellinger distance, and consequently,400

because of its invariancy to any one-to-one transformations we can parameterize the401

prior and posteriors in terms ofτb or σb.402

As expected, sensitivity values with gamma hyperpriors arevery relevant,S(Ga1,Ga2)403

= 0.274 andS(Ga1,Ga3) = 0.477, with calibrated values 0.267 and 0.436 respectively.404

Thus, considering a Hellinger priors difference such as that reported between the nor-405

mal distributions N(0,1) and N(1,1), their corresponding Hellinger posteriors difference406

should be understood as equal to that generated between the pair N(0,1) and N(0.267,1)407

in the case of hyperpriors Ga1 and Ga2, N(0,1) and N(0.436,1) in the case of Ga1 and408

Ga3 (see Appendix 2 for more details of calibration). In contrast, sensitivity values asso-409

ciated to uniform hyperpriors are near zero,S(Un1,Un2) = 0.017,S(Un1,Un3) = 0.010,410

with calibrated values 0.017 and 0.010, despite the Hellinger distance between their411

corresponding priors being identical in gamma choices. In the case of the half-normal412

hyperpriors, the sensitivity associated to HN1 and HN2 is small (0.071 and calibrated413
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value 0.069) but relevant when comparing HN1 and HN3 (S(HN1,HN3) = 0.588 and414

calibrated value 0.576).415

4.4. Sensitivity of the risk of plot infection416

The risk of plot infection was considered the most appropriate measure to describe re-417

sults in Section 3 due to its great relevance in agronomic studies. In this sense, the anal-418

ysis of the variability of the estimates from different modelling prior scenarios could be419

an important issue, mainly as a measure of confidence and reliability. As it was defined420

in (4), its posterior estimation will depend on the covariates, regression coefficients and421

random effects, which show different patterns regarding sensitivity. We carried out a422

sensitivity analysis for that on a similar basis as that for Section 3: the posterior distribu-423

tion of the risk infection was calculated for a generic plot situated at altitude 76 meters424

(the sample median) for each virus and management conditions within each hyperprior425

scenario.426

Table 3 shows the calibration of the Hellinger distance between the posterior distri-427

bution of the risk of plot infection for each management condition and virus. Similarly428

to the particular behaviour of the regression coefficients,the estimation of the risk of429

plot infection seems to be weakly influenced by the differenthyperprior assumptions. In430

any case, the discrepancies observed between all the comparisons were not greater than431

the difference between the normal distribution N(0,1) and N(0.583,1), which reveals432

that Hellinger values are in general close to zero. It is worth noting that the Hellinger433

distance between normal distributions N(0,1) and N(1,1) is 0.343 (see again Table 4 in434

Appendix 2). In a similar manner, the uniform distributionshad the smallest discrepan-435

cies together with half-normal distributions HN1 and HN2. However, as we expected436

inferences from HN3 exhibited the greatest discrepancies.Gamma hyperpriors showed437

substantial discrepancies, above all between Ga1 and Ga3, although these differences438

did not exceed those obtained from hyperprior HN3. Thus, these outcomes seem to in-439
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dicate that the particular choice of a hyperprior distribution influences the estimation of440

the risk infection weakly but in a major extent that in the case of the estimates of the441

regression coefficients.442

Table 3: Calibration of the Hellinger distance between the posterior marginal distribution of

the risk infection computed from hyperprior distributionsGa1 and Ga2, Ga1 and Ga3, Un1 and

Un2, Un1 and Un3, HN1 and HN2, and HN1 and HN3.

443

Virus Management (Ga1,Ga2) (Ga1,Ga3) (Un1,Un2) (Un1,Un3)(HN1,HN2) (HN1,HN3)

ToMV Organic 0.087 0.234 0.011 0.014 0.041 0.583
Non-organic, greenhouse 0.051 0.139 0.011 0.011 0.029 0.355

Non-organic, no greenhouse 0.041 0.100 0.015 0.016 0.031 0.268

CMV Organic 0.079 0.213 0.015 0.014 0.041 0.536

Non-organic, greenhouse 0.039 0.107 0.012 0.010 0.028 0.285

Non-organic, no greenhouse 0.053 0.142 0.009 0.012 0.028 0.369

TSWV Organic 0.049 0.128 0.026 0.025 0.037 0.323

Non-organic, greenhouse 0.040 0.103 0.014 0.009 0.029 0.280

Non-organic, no greenhouse 0.053 0.142 0.013 0.011 0.030 0.380

444

There are not so many discrepancies among the posterior means of the risk of a445

plot infection from the different hyperprior scenarios butthere are many in the posterior446

variabilities (see Table 4). We accounted for variability in terms of standard deviation be-447

cause it is a measure which describes the grade of uncertainty of the quantity of interest448

but mainly due to its direct agronomic interpretation. A great similarity in the posterior449

standard deviation values is repeatedly appreciated in results derived from Un1, Un2,450

Un3, HN2 and HN2 scenarios. The HN3 value was the most different. However, esti-451

mates corresponding to Ga1, Ga2 and Ga3 vary the most, especially in the case of Ga1.452

453

Table 4: Posterior standard deviation of the risk of a plot infectionfrom the full inferential

process based on Ga1, Ga2, Ga3, Un1, Un2, Un3, HN1, HN2 and HN3hyperpriors.
454
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Virus Management Ga1 Ga2 Ga3 Un1 Un2 Un3 HN1 HN2 HN3

ToMV Organic 0.136 0.146 0.161 0.184 0.184 0.184 0.183 0.1780.118

Non-organic, greenhouse 0.217 0.224 0.235 0.252 0.252 0.253 0.251 0.248 0.206

Non-organic, no greenhouse 0.118 0.123 0.131 0.147 0.147 0.147 0.147 0.142 0.109

CMV Organic 0.119 0.127 0.140 0.161 0.161 0.162 0.161 0.156 0.102

Non-organic, greenhouse 0.161 0.166 0.175 0.190 0.190 0.190 0.189 0.186 0.151

Non-organic, no greenhouse 0.179 0.186 0.198 0.216 0.216 0.216 0.215 0.211 0.166

TSWV Organic 0.066 0.071 0.078 0.092 0.093 0.093 0.092 0.0880.057

Non-organic, greenhouse 0.172 0.178 0.187 0.203 0.202 0.202 0.201 0.198 0.162

Non-organic, no greenhouse 0.185 0.192 0.204 0.223 0.223 0.224 0.222 0.218 0.172

455

In this sense, the posterior standard deviation for risk of aplot infection exhibits a con-456

siderable sensitivity to hyperparameter specification. For instance, the risk of a ToMV457

infection of a generic plot in an organic management system was estimated from 0.028458

to 0.553 with 95% probability according to Ga1 scenario, butthe subsequent interval in459

the Un1 scenario was [0.008,0.734].460

5. Discussion461

In this paper we have proposed a Bayesian correlated model (GLMM) to study and462

compare the risk of several virus infections in tomato and pepper plots under different463

agroecosystem conditions. First, we estimated several models, maintaining model spec-464

ification but varying prior scenario default in accordance with different hyperprior distri-465

butions for the random effects scale parameter. Next, we conducted a sensitivity analysis466

to select the most stable model, in which effects of management conditions, altitude and467

random individual effects were assessed by estimating different derived quantities con-468

sidered to be agronomically relevant.469

Regarding the model covariates effect, the risk of plot infection was the quantity470

chosen to analyse agronomic outcomes. The risk of plot infection was estimated in the471

framework of mixed infections (with more than one virus) as well as in single infections472
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(with only one virus). All the quantities applied for a “generic” plot of the population of473

each one of the agroecosystems considered. In the case of single infections, risk differ-474

ence was also used to quantify differences among agroecosystems. Individual random475

effects were evaluated by assessing differences in the estimation of the risk of infection476

among plots managed under similar agroecosystem conditions. This enables the evalua-477

tion of the contribution of the common and of the individual elements in the model, and478

therefore the explanatory capacity of covariates.479

In the case of mixed infections, organic agroecosystems exhibited lower prevalence480

for a three viruses joint infection. Non organic plots, independently of the presence of a481

greenhouse structure, showed a similar behaviour. Single infections were generally less482

prevalent or similar in organic systems than in conventional (non-organic with and with-483

out greenhouse), while TSWV and CMV infections were less prevalent under organic484

management; ToMV infection showed a slightly different behaviour pattern possibly485

as a consequence of the way it is transmitted (mechanical transmission). Altitude ef-486

fect was clearly negative in all viruses but displayed considerable variability among the487

three viruses. Random effects behaviour was very regular inindividuals belonging to488

non-organic with greenhouse and non-organic with no greenhouse considering that in-489

dividual effects did not generate great differences among plots’ risk infection estimates.490

Organic individuals exhibited more variable results in this aspect, but in general we can491

assume that all the fixed effects included in the model have a good explanatory capacity.492

Sensitivity analysis was based on the methodology developed by Roos and Held493

(2011) andRoos et al.(2015). Hellinger distance and sensitivity measure, together with494

their corresponding calibration, allowed us to assess discrepancies in the estimation of495

the fixed effects (regression coefficients), the random effects standard deviationσb as496

well as the “generic” risk of infection among the prior scenarios tested. The evaluation497

of the posterior mean of the regression coefficients, the graphical characterization of the498
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marginal posterior distribution ofσb and the assessment of the standard deviation of the499

posterior distribution of the risk of plot infection among the several modelling scenarios500

completed the analysis. The outcomes obtained exhibited aninsensitive behaviour of501

the fixed effects to hyperprior alterations with Hellinger values very close to zero and502

to each other. Only visual analysis of posterior means enabled us to detect a certain503

instability among inferences obtained from models under gamma hyperdistributions.504

The estimation ofσb showed a highly sensitive behaviour: gamma hyperpriors re-505

peatedly exhibited the most relevant differences showing the greatest sensitivity values506

and the most divergent posterior distributions. In the caseof risk infection estimation, in507

spite of all the Hellinger distances were around zero, gammahyperdistributions showed508

interesting differences in terms of the standard deviationof the posterior distribution of509

the risk of plot infection. We therefore agree withBrowne and Draper(2006), Roos et al.510

(2015), Roos and Held(2011), Gelman(2006), andLunn et al.(2009) that gamma hy-511

perpriors in hierarchical models lack robustness and a sensitivity analysis must be carried512

out in the Bayesian hierarchical framework to assess reliability of the performance. Fur-513

thermore, we also conclude that the “noninformative” nature of a hyperprior does not514

guarantee its impartiality in the inference process.515

Appendix 1. The Hellinger distance516

The Helliger distance (Le Cam, 2012) is a symmetric and invariant to any one-to-one

transformation measure of discrepancy between two probability distributions, f andg,

defined as follows

H( f ,g) =

√

1
2

∫ +∞

−∞

(

√

f (u)−
√

g(u)
)2

du,

where 0≤ H( f ,g)≤ 1, 0 represents no divergence, and 1 full divergence.517

The Hellinger distances between two gamma, uniform and half-truncated distribu-518
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tions are519

• for gamma densities Ga(α1,β1) and Ga(α2,β2)

H2(Ga(α1,β1),Ga(α2,β2)) = 1−Γ
(

α1+α2

2

)

√

β α1
1 β α2

2

Γ(α1)Γ(α2)(
β1+β2

2 )α1+α2

• for uniform densities Un(0,η1) and Un(0,η2), with η1 ≤ η2

H2(Un(0,η1),Un(0,η2)) = 1−
(

η1√η1η2

)

• for half-normal densities HN(0,σ2
1 ) and HN(0,σ2

2 )

H2(HN(0,σ1),HN(0,σ2)) = 1−
1

σ2
1

1
σ2

2

1/4

√

√

√

√

1

σ2
1

+
1

σ2
2

2

In the case of posterior distributionsπ1(θθθ |D) andπ2(θθθ |D), the Hellinger distance520

can be approximated numerically at a finite set ofK integration points as follows521

H2(π1(θθθ |D),π2(θθθ |D)) =
1
2

K

∑
k=1

(

√

π1(θθθ |D)(k)−
√

π2(θθθ |D)(k)
)2

∆k, (A.1)

where the weights∆k are provided by the trapezoidal rule.522

523

Appendix 2. Calibration524

The Hellinger distance can be calibrated to evaluate the importance of the observed dis-

crepancies by means of a reference parameter. Calibration was undertaken with respect

to the normal distribution with variance one. The Hellingerdistance between densities
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N(0,1) and N(µ ,1) is

H(N(0,1),N(µ ,1)) =
√

1−exp(−µ2/8),

and consequently

µ =
√

−8log(1−H2(N(0,1),N(µ ,1)))

Table A.2.1 shows a range of calibrated valuesµ with its subsequent Hellinger distance,525

H(N(0,1),N(µ ,1)).526

Table A.2.1: Calibration of the Hellinger distance.527

µ H(N(0,1),N(µ ,1))

0 0
1 0.343
2 0.627
3 0.822
4 0.930
5 0.978
6 0.994
7 0.999
8 0.999
9 0.999
10 1

528

The sensitivity measure introduced previously can also be calibrated. Calibration of529

the sensitivity value obtained,s, has been obtained following the subsequent equation:530

C(s,µ ′) = µ(s×H(N(0,1),N(µ ′,1))) (A.2)

Interpretation of calibration can be conditioned by the choice of µ ′, so that for a value531

µ ′ = 1, the value ofs, would be comparable with the Hellinger distance obtained be-532

tween two normal priors, N(0,1) and N(µ ′ = 1,1) and the subsequent normal posteriors,533
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N(0,1) and N(C(s,µ ′ = 1),1). It is important to note that ifs> 1 thenC(s,µ ′)> µ ′; if534

s< 1 thenC(s,µ ′)< µ ′; and ifs= 1 thenC(s,µ ′) = µ ′.535
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the data and useful comments. We thank Marie Savage very muchfor reviewing the538

English and editing the manuscript. Elena Lázaro researchwas funded by the Spanish539

Ministry of Education, Culture and Sports, Grant FPU 2013/02042. The work of Carmen540

Armero was partially supported by Grant MTM2016-77501-P from the Spanish Ministry541

of Economy and Competitiveness. The work of Luis Rubio was partially funded by the542

INIA Grant RTA2013-00047-C02. We wish to acknowledge two anonymous referees543

and the Associate Editor for their valuable comments that substantially improved the544

original version of the paper.545

References546

Albert, J. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data.547

Journal of the American Statistical Association, 88, 669–679.548

Alvares, D., Armero, C., Forte, C., and Rubio, L. (2016). Exploring Bayesian models to evaluate549

control procedures for plant disease.Statistics and Operations Research Transactions,550

SORT, 40, 139–152.551

Bengtsson, J., Ahnström, J., and Weibull, A. C. (2005). Theeffects of organic agriculture on552

biodiversity and abundance: a meta-analysis.Journal of Applied Ecology, 42, 261–269.553

Bettiol, W., Ghini, R., Galv ˜ao, J. A. H., and Siloto, R. C. (2004). Organic and conventional554

tomato cropping systems.Scientia Agricola, 61, 253–259.555

Box, G. E., and Tiao, G. C. (1992).Bayesian Inference in Statistical Analysis. Hoboken: John556

Wiley & Sons.557

Browne, W. J. and Draper, D. (2006). A comparison of Bayesianand likelihood-based methods558

for fitting multilevel models.Bayesian Analysis, 1, 473–514.559

Clark, M. F., Adams, A. N. and Barbara, D. J. (1976). The detection of plant viruses by enzyme-560

linked immunosorbent assay (ELISA). InX International Symposium on Fruit Tree Virus561

Diseases67, 43–50.562



32 Bayesian correlated models for assessing the prevalence of viruses...

Clark, J. S., Wolosin, M., Dietze, M., Ibanez, I., Ladeau, S., Welsh, M. and Kleoppel, B. (2007).563

Tree growth inference and prediction from diameter censuses and ring widths.Ecological564

Applications, 17, 1942–1953.565

Christensen, R., Johnson, W., Branscum, A. and Hanson, T. E.(2011). Bayesian Ideas and566

Data Analysis: An Introduction for Scientists and Statisticians. Boca Raton: Chapman &567

Hall/CRC Press.568

Finley, A. O., Banerjee, S., and Basso, B. (2011). ImprovingCrop Model Inference Through569

Bayesian Melding with Spatially-Varying Parameters.Journal of Agricultural, Biological570

and Environmental Statistics, 16, 453–474.571

Gallitelli, D. (2000). The ecology of Cucumber mosaic virusand sustainable agriculture.Virus572

Research, 71, 9–21.573

Garcı́a-Cano, E., Resende, R. O., Fernández-Muñoz, R. and Moriones, E. (2006). Synergis-574
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Bellido, JM. (2015). Bayesian spatio-temporal approach toidentifying fish nurseries by615

validating persistence areas.Marine Ecology Progress Series, 52, 245–255.616

Roos, M. and Held, L. (2011). Sensitivity analysis in Bayesian generalized linear mixed models617

for binary data.Bayesian Analysis, 6, 259–278.618

Roos, M., Martins, T. G., Held, L. and Rue, H. (2015). Sensitivity analysis for Bayesian hierar-619

chical models.Bayesian Analysis, 10, 321–349.620
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