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Bayesian correlated models for assessing the
prevalence of viruses in organic and

non-organic agroecosystems

Elena Lazard, Carmen Armerd Luis Rubid

Abstract

Virus diseases constitute one of the most important limiting factors in horticultural pro-
duction. Cultivation of horticultural species under organic management has increased in
importance in recent years. However, the sustainability of this new production method
needs to be supported by scientific research, especially in the field of virology. We
studied the prevalence of three important virus diseases in agroecosystems with regard
to its management system: organic versus non-organic, with and without greenhouse.
Prevalence was assessed by means of a Bayesian correlated binary model which con-
nects the risk of infection of each virus within the same plot and was defined in terms of
a logit generalized linear mixed model (GLMM). Model robustness was checked through
a sensitivity analysis based on different hyperprior scenarios. Inferential results were
examined in terms of changes in the marginal posterior distributions, both for fixed and
for random effects, through the Hellinger distance and a derived measure of sensitivity.
Statistical results suggested that organic systems show lower or similar prevalence than
non-organic ones in both single and multiple infections as well as the relevance of the
prior specification of the random effects in the inferential process.

IDepartment of Statistics and Operations Research, FaotiMathematics, Universitat de Valéncia,

Spain. elena.lazaro@uv.es, carmen.armero@uv.es
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MSC:

Keywords: Hellinger distance, model robustness, risk infection, sensitivity analysis, virus epidemi-

ology.

1. Ordinary Text

Society is becoming increasingly concerned about enviemialt damage caused by
agricultural activities. The sustainability of convemi@d agriculture is now being ques-
tioned, which is prompting traditional production systeim®volve toward production
methods that can protect both environmental and humanhh@zdn Bruggen 1995
Bengtsson et g12005).

In recent decades, organic agriculture has grown rapidgomparison with other
agricultural systems. The adoption of these new agriciljpractices has brought about
the need to compare low-input and conventional systemsrify wehether agroecosys-
tem sustainability can be achieveBettiol et al, 2004). Despite the emergence of or-
ganic agriculture systems, the literature on their effectd interactions is scarce and
insufficient, above all in the field of virologyTémlinson 1987. Diseases caused by
viruses constitute a major threat to the large-scale praxtuof crops worldwide, caus-
ing serious economic losses and undermining sustainaf@llitelli, 2000. Assessing
the risk of infection should therefore be a priority in thadst of the epidemiology of
such virus diseases.

The ecological and epidemiological factors that determvings infections in veg-
etable crops are diverse and little is known about them. Thecss and spread of
viruses, together with certain agricultural and hortigradt practices, have a strong in-
fluence on their prevalencélénssen et gl2010. In this respect, studies on the risk of
virus infections need to characterize the agroecosystdantm as well as understand

the complex relationships between organisms (plantsppgatis, and vectors) and envi-
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ronment Gerra et al.1999.

The main scientific question addressed in this paper is tliy sthd comparison of
the risk of different virus infections in tomato and peppét® characterized by their
agroecosystem. Specifically, we focus on the detection amahtdication of the ef-
fects associated with organic management. The agroeeosysteach plot is defined
through a set of covariates containing information on iteaggement conditions and al-
titude. Agroecosystems are dynamic entitiEgley et al, 2011) with complex sources
of uncertainty and hierarchies. Followifignornley and Franc€007), the estimation of
the infection risk of different viruses within the same platuld require the modelling
of not only a suitable set of covariates but also the inclusibsome probabilistic terms
which connect the different observations of the same iddiuval.

The inclusion of dependence and/or correlation relatigissamong variables, re-
sponse and/or covariates, is usually done by means of raeffests whose stochastic
nature adds much more probability to the structure of theehoBayesian reasoning
provides a natural environment for analysing them mainisalise of the own concep-
tion of the Bayesian probability theory, which specifiedladl uncertainties in the model
through probabilistic element&dredg 1990. Some applied papers that illustrate the
benefits of hierarchical Bayesian models in biometricsades aréAlvares et al(2016
in agriculture,Paradinas et a{2015 in fisheries,Paciorek et al(2009 in forestry, and
Clark et al.(2007) in ecology.

A Bayesian binary correlated model under the generalizeglali mixed models
(GLMM) specification was considered to perform a regresaitalysis of the prevalence
of the different viruses. Random effects were used to cateehe risk of infection of
each virus in the same plot and quantify the intra-plot gbit be infected. Robustness
in hierarchical Bayesian models is a major concern as it eaaffected by an inappro-

priate choice of the hyperprior distributions for hypegraeters Iambert et al. 2005
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4 Bayesian correlated models for assessing the prevalence of viruses...

Gelman 2006 Roos and Held2011; Roos et al.2015. To this effect, the sensitivity
of the modelling was tested using several specificationshi@typerprior distribution
of the random effects scale parameter. A general measuesl loasthe Hellinger dis-
tance [e Cam 2012, with its calibration, was used to quantify discrepandieshe
subsequent posterior marginal distribution of the commemgrassion coefficients and
hyperparameter.

The remainder of this article is organized as follows: $#cf reviews the data and
presents the formulation of the model. Section 3 reportsdisclisses the results with
regard to multiple and single viral infections. Section dpwses several random effects
specifications and analyses the robustness of the estimmetdels through a sensitivity
measure based on the Hellinger distance. Some concludimarks are given in Section

5.

2. Viruses data and statistical modelling

2.1. Data description

Globally, about 30 viruses are capable of affecting the rkinstvn horticultural crops.
However, despite being able to infect a wide variety of sgpgcthey usually affect
Solanaceae species, specially tom&olénum lycopersicumand pepper Gapsicum
annuum L). These species are two of the most common vegetable cropsign Spain
whose production is being seriously limited by virus dissasThere has recently been a
considerable increase in the cultivation of these vegesalohder integrated systems such
as organic agriculture. It is therefore essential to camysoibsequent virus prevalence
studies in order to guarantee their sustainability.

A project under the auspices of the Valencian Institute é&gtural Research was
conducted in the summer of 2012 in the Valencian region fisr plarpose. A total of
30 plots in tomato and pepper production were selected dicgpto their system of

production. Each plot was evaluated in terms of its agroestem characterization and
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the presence or absence of three different viral infectinrthe crops: tomato mosaic
virus (ToMV), cucumber mosaic virus (CMV) and tomato spotelt virus (TSWV).
These viruses affect both tomato and pepper crops equedlyransmitted in different
ways, and can cause substantial economic losses. The peeskaach specific virus
infection in a plot was assumed when the virus was detected ieast one of eight
randomly-selected plants. The enzyme-linked immunosirassay (ELISA) technique
(Clark et al, 1976 was used to detect each virus.

The assessment of the agroecosystem of each plot was daeriny its manage-
ment condition and altitude. Management condition wasuataet by classifying each
plot as organic, non-organic with greenhouse structurg n@m-organic with no green-
house structure. These categories were defined accorditige tmost representative
agroecosystems in Spanish agriculture. Organic ploterdifdbm the non-organic ones
in many respects, but substantial differences are relatatiet use of agrochemicals
and other external inputs with important influence in pest disease prevalence. In
fact, some purported drawbacks related to organic aguielihclude an increasing in-
cidence of pest damage and higher risks of pest outbrdaksrfieau and Goldstein
2007). All plots classified as organic complied with the curreagulation and were
certificated as such by the Organic Agriculture CommittethefAutonomous Govern-
ment of Valéncia. The presence of greenhouse in non orgéotis was also considered
because is a frequent practice in non-organic systems. gdefucovering protections
suppose a physical barrier which is directly related tosinfection in the sense that
denies insects (vector of virus transmission) acces tdglan

Of the total of 30 plots of our study, 18 were classified as migand 12 as non-
organic, 5 of them with greenhouse structure. For orgaratspthe proportion of in-
fected plants with ToMV, CMV, and TSWV was 0.222, 0.167, an@b8, respectively.

In the case of non-organic plots with greenhouse these pgiops were 0.400, 0.200,
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6 Bayesian correlated models for assessing the prevalence of viruses...

and 0.200, respectively, and 0.143, 0.286, and 0.286 foionganic plots without green-
house. The organic plots presented a lower proportion oftplmfected by CMV and
TSWV viruses, but the prevalence of TOMV was lowest in the-ngganic plots with no

greenhouse.

2.2. Statistical model

We consider a logit GLMM for correlated binary responsdizéufras 2009 to model
the Bernoulli random variabl¥; which describes the presence or absence of vjrus

(j = 1 corresponds to ToM\}, = 2 to CMV, andj = 3 to TSWV) in ploti,

(Yij | 8j) ~ Bernoulli(8;),
1)

logit(6j) =XB;+hi,i=1,...,30,
where8;; is the probability that virug will be detected in plot and represents risk of
infection; x; is the vector of covariated; is the corresponding vector of the regression
coefficients; andbi | 62) ~ N(0,0p) is a normal random effect associated with plot
i with mean zero and standard deviatiop. The three management conditions were
coded in a sequence of two dummy variables (organic and rgamiz, with and without
greenhouse structure) to avoid overparameterizatiorh) @riganic management as the
reference category.

Random effects capture within-plot variability and coatel prevalence among all

viruses so that each individual virus infection is detemdirby its own agroecosystem
effect and an individual effect plot which denotes its @pito be infected. They also

provided conditional independence among the prevalentteedhree viruses as follows
_ 3
P(Yj =Yj, i =1,23|B.,bi,x) =[] P(Yj =v; | Bj,bi.x), 2
=1

wherey; € {0,1}, j=1,2,3, B = (B4,B,.B,)", and the conditional probability that plot
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147 1 will be infected with virusj can be expressed as

exp{XB; +bi}

P0G =11 By,bi%) = 1+exp{XB;+b}’

3)
148 The joint marginal distribution obtained integrating dut tandom effects iy,

P(Yi; =y, j = 1.2,3| B,0b,X) = / P(Y; =y, j = 1.2,3| B,bi,x)N(bi | 0,0p) db,
(4)
149 does not depend on the subject-specific random effects artubdaterpreted as the com-
150 mon risk infection of a generic plot from the population witie same agroecosystem
151 and altitude.
Inference was carried out using Bayesian statistics. Wethiee needed to elicit
a prior distribution for the parameters and hyperpararadi@rcomplete the Bayesian
model. We considered a prior independent default scenatto varmal distributions
centered at zero and a wide variance for the regression@eet. As previously intro-
duced, the specification of a hyperprior distribution fae tandom effects scale param-
eter is a challenging issuégmbert et al.2005 Gelman 2006 Roos and Held2011;
Roos et al.2015. Section 4 contains a sensitivity analysis of the perfaroeaof vari-
ous traditional hyperprior choices (gamma, uniform and-hatmal) in our study. This
analysis led us to choose the uniform distribution(&| 0,100) for the standard devi-

ation of the random effects. Consequently

(B, 0p) = H?:l Mi—o 7T(Bik) TT(0b)
= M1 Mi—oN(Bj« | 0,0% = 1000 Un(ay, | 0,100) (5)

152 whereBJ- = (Bjo, Bj1, Bj2, Bj3)" are the regression coefficients associated with organic,

153 non-organic with and without greenhouse and altitude @alaghmic scale) for virug.
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8 Bayesian correlated models for assessing the prevalence of viruses...

3. Results

The posterior distributiom(B, g, | D), whereD denotes data, was approximated us-
ing Markov chain Monte Carlo (MCMC) simulation methods wwhnBUGS Software
(Lunn et al, 2000. Random effects models, and Bayesian categorical GLMsain p
ticular, involve many computational difficultieg\ert and Chil 1993. We fixed the
number of iterations and the burn-in period with very largéues to avoid strong cor-
relation in the MCMCs samples and get a reliable sample optsterior distribution.
Specifically, simulation was run considering three Markbgins with 1 000 000 itera-
tions and a burn-in period with 100 000. In addition, the nbaiere thinned by storing
every 10th iteration in order to reduce autocorrelationhi@ saved sample and avoid
computer memory problems.

Trace plots of the simulated values of the chains appealammng one another,
indicating stabilization. Convergence of the chains togbsterior distribution was as-
sessed using the potential scale reduction faBaand the effective number of indepen-
dent simulation draws, neff. In all cases, fR@alues were equal or close to 1 and neff
> 100, thus indicating that the distribution of the simulatetles between and within
the three chains was practically identical, and that sefictMCMC samples had been

obtained, respectivelygelman and Rubinl992).

3.1. Management conditions

Multiple viral infections that may result in synergisms artagonisms are frequently
found in nature, with unpredictable pathological conseges. Synergistic interactions
resulting from mixed infections with two or more viruses ammmon and well docu-
mented in plantsGarcia-Cano et al2006). Viral synergism could affect various growth
variables such as plant height, weight, and yidi(phy and Bowen2006), and in ex-

treme cases can lead to plant death.
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The joint posterior distributionit(P(Y;; =y;, j =1,2,3| B, 0b,Xi) | D), wherey; €
{0,1}, of the risk infection given in4) for a generic plot at given altitude in each of the
management systems is the basic tool for assessing suctyisyne and antagonisms.
This posterior distribution is also the starting point foe ttomputation of relevant con-
ditional or marginal inferences.

We begin by discussing some results about multiple viradtibns with regard to
plot management condition: the posterior distributionhef prevalence of the total num-
ber of viruses in a plot and the posterior distribution of tiek of a third infection in
plots already infected with two of the viruses. Figure langhthe mean of the posterior
distribution associated to the presence of 0, 1, 2 and 3esrursa generic pldtlocated
at 76 meters of altitude (the sample mean) with regard to #sagement system. Most
of the plots have no infections, but the organic ones predenhighest rates for plots
without infections. Non-organic plots, with and withouegnhouse, behave similarly.

Figure 1b shows the posterior mean of the risk of a third tidecin plots already
infected with two of the viruses. Outcomes are also obtafoeé generic ploi situ-
ated at 76 meters of altitude (the sample mean) with regaitd tnanagement system.
For condition ToMV in the presence of CMV and TSWV, organid aon-organic with
greenhouse plots behave similarly with probabilities atb®.6. This is not the case
for non-organic with no greenhouse plots, with an estimatexbability close to 0.2.
CMV infection given ToMV and TSWV presents homogeneous Itesa all manage-
ment systems, with a higher difference among estimatedapitities of 0.167. The
pattern for the probability of a TSWV infection in plots aidty infected with ToMV
and CMV seems to be different among the management conslitioon-organic with
no greenhouse systems shows the highest probability (0.f&lbwed by non-organic
with greenhouse plots (0.316), and organic (0.172), res@de It is difficult to detect

a general trend on conditional infections among the diffeegroecosystems analysed.



205

206

207

208

209

210

211

212

213

214

215

216

217

218

219
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This is a very interesting subject and surely a new study witihe data would be nec-

essary in order to better understand them.

~
IS

02 03 04 05
L

0.1

0.0
|

0 1 2 3 ToMV CMvV TSWv

(@) (b)

Figure 1: (a) Probability (mean of the posterior distribution) forefpresence of 0, 1, 2 and 3
viruses in organic (black), non organic-green (red) and iwoganic-non green (green) manage-
ment systems. (b) Probability (mean of the posterior distion) of the risk of a third infection
in plots already infected with two of the viruses in orgariita¢k), non organic-green (red) and
non organic-non green (green) management systems.

The marginal effect of the management conditions in eaatsviras assessed through
the marginal posterior distribution(P(Y;; = 1| B, 0y, X;) | D). Table 1 shows a descrip-
tive of the posterior distribution of the risk of infectionrfeach virus and management
conditions for a generic plot situated at a height of 76 nsefifre sample median). The
lowest risk of infection for a generic plot under organic ragement is for TSWV virus.
The most relevant differences among the management comslitvere found for virus
ToMV. In contrast, virus CMV seemed the most stable. Howeaher organic effect was
weaker for TOMV risk, approximately about four times the doeTSWYV virus. It is
important to mention the great uncertainty associatedl tmaiginal posterior distribu-
tions in the analysis, mainly due to the combination of tlikioed size of the sample and
the usual scarce information of binary data. To this effettigger experiment would be

necessary for a more informative and objective study tHatvalto reach more precise
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conclusions about the subject.

Table 1: Summary of the posterior distribution of the risk of infentifor each management
condition and virus.

Virus Management Mean Sd Qosw  Qsoe  Qo7.5%

Organic 0.225 0.184 0.008 0.181 0.734
TOMV' " Non-organic, greenhouse 0311 0.252 0.006 0.248  0.900
Non-organic, no greenhouse 0.100 0.147 0.000 0.041 0.553

Organic 0.169 0.161 0.004 0.124 0.634
CMV' Non-organic, greenhouse ~ 0.155 0.190 0.001 0.080 0.719
Non-organic, no greenhouse 0.234 0.216 0.004 0.168 0.809

Organic 0.057 0.093 0.000 0.026 0.309
Non-organic, greenhouse 0.174 0.203 0.001 0.095 0.764
Non organic, no greenhouse 0.253 0.223 0.005 0.189 0.831

TSWV

Comparison of the three management systems was also gemtith the posterior
distribution of the risk differenceRD) (Christensen et gl2011). RDis an absolute and
intuitive measure of association for quantifying diffecerbetween proportions associ-
ated to an outcome of interest in two groups. It is define@-ith, 1] so thatRD =0
means no difference between groupd, < RD < 0 that risk is greater in group 2, and
0 < RD< 1 the opposite.

Figure 2 shows, for each virus, the posterior mean and 95&bbieeinterval of the
RD between organic and non-organic, with and without greeséogeneric plots. Infor-
mation provided by this graphic reaffirms the results in &blNote that the differences
between organic management conditions and the two nomigrganditions are clear in
the case of TSWV infection: both posterior distributione kighly concentrated on the
negativeRD values with associated posterior probabilities 0.764 aBd®when com-
paring organic and non-organic with and without greenhanaeragement, respectively.
For CMV infections, the results are less clear, with postegprobabilities of 0.395 and

0.611, respectively. In the case of ToMV infection, there faw differences between



238

239

240

241

242

243

244

245

246

247

248

249

251

252

253

12 Bayesian correlated models for assessing the prevalence of viruses...

organic and non-organic with greenhouse conditions (posterobability of a negative
difference is 0.620), but a relevant probability, 0.84ttthee risk of infection will be

greater in organic than in non-organic without greenhouse.

1.0

0.5

—
b
o

0.0

-1.0

ToMV CMV TSWV

Figure 2: Posterior mean and 95% credible interval of the RD betweeganic system in re-
lation to non organic-green (left) and non organic-no grgeight) system for ToMV, CMV and
TSWV infections.

3.2. Altitude condition effect

Plot altitude is a relevant epidemiological informatioreduo its important role in shap-
ing insect vector distributions and virus survival. Theeeffof altitude on the risk of
infection is clearly negative in all viruses and therefore @an expect a decrease of the
risk of infection as altitude increases. Figure 3a showsthsterior distribution of the
regression coefficient associated to altitude for eactsvir®d.914,—0.745 and-0.480
are, respectively, the subsequent posterior mean of thfaieet for virus ToMV, CMV,
and TSWYV, with posterior probabilities 0.940, 0.904, anth8. associated to their neg-
ative values. Note that virus ToMV is the most negativelyoagged with altitude. Fig-
ure 3b shows the posterior distribution of tRE between two generic organic plots with
altitudes of 16 and 604 m, the lowest and highest values dfrid@nic plots in the sam-

ple. These graphics are in line with the previous commentisadso indicate the less
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important role of altitude in the risk of a TSWYV infection inganic crops.

1.0

0.5

-3

ToMV CMV TSWV ToMV CMV TSWV

(@) (b)

Figure 3: For virus ToMV (in black), CMV (in red), and TSWV (in greendsgerior mean and
95% credible interval of the regression coefficient associatettie altitude (in logarithmic scale)
(a), and posterior distribution of the RD between a typicajamic plot at altitudes 16 and 604
m (b).

3.3. Individual random effects

Random effects for each plot capture the ability to be imféaif individual plots, thus
correlating the risk of infection among the viruses of ealth. pSince each individual
random effect is responsible for the differences in themestion of the risk between
plots managed under similar agroecosystem conditionsitifiag their contribution to
the analysis in terms of factors and covariates is highlgvagit to our understanding of
the weight of the common and individual elements in the model

The mean of the posterior distribution of the standard dienaagy, of the plot ran-
dom effect is 0.968 with a 95% credible interval [0.046, 2]J6Tn addition, we assessed
the contribution of the random effect associated to eachtpleards the conditional
posterior distribution of the risk of infectiom(P(Y;j = 1| B,bi,x) | D). It was esti-

mated individually for the three viruses at the altitude 6friieters with the purpose of
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assessing differences in risk infection among individultg share the specification of

the vector of covariates, that is to say, plots that were managed under the same system

Figure 4 shows a mosaic of subfigures in which each one displey/posterior expec-
tation of the risk of infection for each plot grouped accagdto management condition
(rows) and the type of virus infection (columns).

We can distinguish a certain stability in risk infection aeding individuals belong-
ing to non-organic no greenhouse systems (row 3) with maxindifferences among
individuals of 0.039, 0.084 and 0.090 for ToMV, CMV and TSWaépectively. Non-
organic with greenhouse plots (row 2) are less similar wigximum differences in risk
infection no greater than 0.190 (ToMV). Organic plots shdwe most remarkable dif-
ferences among their individuals, with maximum differenoé 0.211 for ToMV and
0.231 for CMV. In contrast TSWV showed the opposite behavieith a slight maxi-
mum difference of 0.087. In conclusion, we suspect the gtretevance of the common
elements in the model (fixed effects) in the case of non-acgamd no greenhouse plots
regardless of virus infection. On the other hand, in the cdgeganic plots the weight
of the common elements effect in the model was not so evidemgidering that not all
viruses exhibited a similar tendency: ToMV and CMV risk ictien varied considerably

among individuals, but this was not the case with TSWV.

4. Sensitivity analysis

Bayesian GLMMs are a particular class of models for whichasi@mation process can
be seriously affected by the elicitation of prior distriloumis for the random effects scale
parameter (standard deviationy,, or a one-to-one transformation of it, variamté or
precisiont, = 1/abz). Special attention is required in studies where the nurobgmoups

is small, gy, is close to zero, and/or the number of groups is large cordpgarthe num-

ber of observations in each groupdx and Tiag 1992 Gelman 2006 Roos and Held
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201]). This latter situation is the case of our study, witk- 30 plots and only three
observations in each of them. An additional element thataagdes the situation is the
sparsity of the data due to its categorical, binary condlitdd/e conducted a sensitivity
analysis of the posterior distribution to the specificatifrseveral prior hyperdistribu-
tions for the random effects scale parameter. This analyasbased on the methodol-
ogy developed iMcCulloch (1989, Roos and Held2011), andRoos et al(2015) re-
garding the stability of the marginal posterior distrilautiof the regression coefficients
of the model and the relative changes in the subsequent maappsterior distributions

of the random effects scale parameter.
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Figure 4: Posterior mean of the conditional posterior distributionassociated to
management systems organic (row 1), non organic and graeeho(row 2) and
non organic and non greenhouse (row 3) for viruses ToMV f(ooll), CMV (col-
umn 2) and TSWV (column 3) obtained from a fixed altitude vabfe 76 m.
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4.1. Hyperprior distributions

For the random effects scale parameter, different hypmrgistributions were specified

for 1, within the family of gamma, and fawy, within uniform and half-normal distribu-

tions
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e Gamma: G€.001, 0.001), Gg0.005 0.005, and G&0.05 0.05 (Gal, Ga2, and

Ga3, respectively),
e Uniform: Un(0, 100), Un(0, 55.63), and Ur{0, 7.92) (Un1, Un2, and Un3), and

e Half-normal: HN10), HN(3.0387, and HN0.3965 (HN1, HN2, and HN3).

Gamma distributions were parameterized in terms of a shape aate parameter,
and half-normal distributions were set according its staddleviation. Hyperdistribu-
tions Gal, Unl, and HN1 were considered the default choioestal their “noninfor-
mative” nature and their common use in Bayesian applicatidn addition, two other
hyperparameter specifications within each family of hysntbutions were contem-
plated to assess the effect of small and medium perturtsafionhe hyperparameter
specifications on posterior inferences. These hyperpisbrilslitions were set following
the criterion of the Hellinger distancéd Cam 2012. This is a symmetric and invari-
ant measure of discrepancy between two probability digiobs taking values between
0 and 1, where the value 0 represents no divergence and Wifaligence (See Ap-
pendix 1).

Hyperparameter values were assessed considering twemeéHellinger distance
values, a small and a medium perturbation. This computatamsibased on the analytical
expression of the Hellinger distance between gamma, umiéord half-normal distribu-
tions (see Appendix 1). Small perturbation was associaied Hellinger distance of
0.541 and medium to 0.848. Consequently, Ga2, Un2, and Hig@rpgirameteres were
determined to obtain a Hellinger distance of 0.541 in refatd hyperdistributions Gal,
Unl, and HN1, respectively. Hyperparameter values for @GR, and HN3 were se-
lected because of their Hellinger distance, 0.848, to tpmens Gal, Unl, and HN1,

respectively.
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Focusing on gamma hyperdistributions, Gal exhibits thesticange of uncertainty
with a variance of 1000. It is frequently used in many of thareples provided with the
WIinBUGS softwarel(unn et al, 2012 and shows a uniform shape for most of the range
with a spike of probability density near zero. Ga2 and Ga3eslids shape, although
they show lower range coverage as a consequence of their fanance values, 200
and 20. Hyperprior Unl is recommended $piegelhalter et a[2004) in their book on
clinical trials. It is a very generous distribution allowiffior a great space of values due
to its variance of 833.3. Un2 and Un3 display variance vaafez57.84 and 5.23, and
as such they are very different from the non-null densitgearThe half-normal default
option, HN1, is a choice used ithompson et al{1997) andRoos and Held20117). It
exhibits a variance of 36.3 giving a low probability to vadugreater than this. HN2 and
HN3 are more informative versions, especially HN3 with d@amee value of 0.06.

We conducted nine independent inferential processes Wwilsame data and the
same marginal prior distributiori(B) for the regression coefficients as &) put varying

marginal hyperprior distribution according to the speaifiens previously presented.

4.2. Sensitivity of the regression coefficients

We discuss sensitivity of the marginal posterior distiifa$ of the regression coeffi-
cients derived from the inferential processes describedalDiscrepancies among the
estimates of posterior marginal distributions were theltesf alterations in the hyper-
prior values. Hellinger distances between posterior maiglistributions approximated
by MCMC methods were computed via expressidnl] in Appendix 1 and imple-
mented by means of the functiéidi st NoSi ze in theRpackagenk (Krachey and Boone
2012. Furthermore, to facilitate interpretation these valvese calibrated with regard
to a normal distribution with variance 1 (see Appendix 2 famrendetails about calibra-
tion).

Table 2 shows the calibration of the Hellinger distance letwthe posterior marginal
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distribution of the different coefficients of regressiommmted from the hyperpriors
considered. In none of the comparisons the discrepancsss\ad were greater than the
differences between the normal distribution®N) and N(0.284 1), which reveals that
Hellinger values are in general close to zero (see Table $ppeAdix 2 where a calibra-
tion of the normal mean related to its subsequent Hellingeance is displayed). Uni-
form distributions have the smallest discrepancies despéit existing differences among
hyperpriors Un1, Un2, and Un3. The behaviour of half-nordisiributions was similar
to that of the uniform distributions in the case of hypermibiN1 and HN2. Neverthe-
less, inference from hyperprior HN3 exhibited the greadiestrepancies, surely due to
its informative nature. Gamma showed greater discrepanhen uniform hyperpriors
in all cases, although in none of the scenarios did theserdiftes exceed those ob-
tained from hyperprior HN3. Thus, the above comments enable conclude that our
assumptions on the choice of hyperparameter prior digtoibinfluences the estimates
of the regression coefficients only to a minor extent.

We now discuss the effect of the different hyperpriors cd@sd on the posterior
distribution of each regression coefficient. Figure (5) im@saic of subfigures. Each
subfigure displays the posterior mean of the regressiofficieats of the different infer-
ential processes conducted. The order of the points camelsgo the order in which hy-
perpriors are presented (Gal, Ga2, Ga3; Unl, Un2, Un3; arid HN2, HN3). A great
similarity can repeatedly be seen, in practically all co#ffits and viruses, between re-
sults from hyperpriors HN1 and HN2, and also those from th&um hyperpriors. As
expected, results from HN3 are very different, most likele do its informative char-
acteristics. Finally, posterior means from the analysegth@n the gamma hyperpriors

vary the most, indicating a greater sensitivity to paramgpecification.
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Table 2: Calibration of the Hellinger distance between the postenrginal distribution of
the coefficients of regression associated to orgafig),(non-organic with greenhous@fo-g),

non-organic without greenhousgr{o-ng and altitude in logarithmic scalg3;;) computed from
hyperprior distributions Gal and Ga2, Gal and Ga3, Unl andJdnl and Un3, HN1 and
HN2, and HN1 and HN3.

Virus Coeff. (Gal,Ga2) (Gal,Ga3) (Unl,Un2) (Unl,Un3) (HIMNMNZ2) (HN1,HN3)
ToMV  Bo 0.038 0.084 0.024 0.022 0.034 0.236
Bno-g 0.032 0.068 0.019 0.019 0.035 0.197
Bno-ng 0.020 0.042 0.018 0.020 0.024 0.124
Bat 0.043 0.099 0.022 0.024 0.039 0.284
CMV  Bo 0.033 0.068 0.023 0.021 0.034 0.201
Bno-g 0.029 0.056 0.021 0.019 0.025 0.148
Bno-ng  0.029 0.060 0.019 0.020 0.027 0.171
Bait 0.037 0.085 0.023 0.023 0.038 0.249
TSWV  Bo 0.022 0.052 0.019 0.021 0.030 0.144
Bno-g 0.024 0.043 0.021 0.020 0.025 0.108
Bno-ng  0.023 0.048 0.020 0.019 0.025 0.139
Bat 0.028 0.069 0.020 0.019 0.034 0.193

4.3. Sensitivity of the variability of the random effects

We now discuss and assess the sensitivity of the randomtefeale parameter cor-
responding to the inferential processes described in 8tibse4.1. Figure 6 shows
the posterior marginal distribution (mean and 95% credibtervals) of the standard
deviation of the random effects. It is worth noting that ie tase of the gamma hyper-
priors, the posterior marginal distributior{gy, | D) is computed from the joint posterior
(B, 1, | D), which is based on the priar(B, 7). The results from the uniform hyper-
distribution are stable, since the subsequent marginaéposdistributions are virtually
indistinguishable. The opposite occurs for results from gamma hyperpriors, with
very different posterior distributions greatly influendmsdthe spike near zero of the sub-
sequent hyperprior. The half-normal distribution alsoibkitk a sensitive performance,

with the posterior distributions from HN1 and HN2 practigaéqual to those from the
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uniform distribution. As previously noted, the exceptisrfar the posterior distribution
from the informative HN3.

Finally, we used a sensitivity measure developdfaons and Held2011) to evaluate
the relative change in the posterior marginal distributadrthe random effects scale
parameter with regard to subsequent change in the prioibdison. Changes in both
prior and posterior distributions are assessed throughattie between two Hellinger

metrics in the form
H(rm(6 | D), e(6 [ D))
H(ra(0), :(0)) '

S(T[L 7T2) =
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Figure 5: Posterior mean of the regression coefficients associatqudbcategories organic
(row 1), non organic and greenhouse (row 2), non organic anod greenhouse (row 3), and
covariate altitude in logarithmic scale (row 4) for virus&@eMV (column 1), CMV (column 2),
and TSWV (column 3) obtained from the full inferential pesceased on G1, G2 and G3 (black),
Un1l, Un2 and Un3 (red) and HN1, HN2 and HN3 (green) hypergrior
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25
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Figure 6: Posterior mean and 95% credible interval foy, obtained from hyperpriors Gal,
Ga2, and Ga3 in black, Un1, Un2, and Un3 in red, and HN1, HN2] HIN3 in green.

whererg (6 | D) andre(0 | D) are the subsequent posterior distributions frmarff) and
5(0). Note thatS(rq, 5) only depends on the Hellinger distance, and consequently,
because of its invariancy to any one-to-one transformatioe can parameterize the
prior and posteriors in terms @f or o,.

As expected, sensitivity values with gamma hyperpriorsvarg relevanty(Gal,Ga2
= 0.274 andS(Gal,Ga3 = 0.477, with calibrated values 0.267 and 0.436 respectively.
Thus, considering a Hellinger priors difference such as iteorted between the nor-
mal distributions NO, 1) and N'1, 1), their corresponding Hellinger posteriors difference
should be understood as equal to that generated betweeaiti{@, 1) and N0.267 1)
in the case of hyperpriors Gal and GaZPN) and N0.4361) in the case of Gal and
Ga3 (see Appendix 2 for more details of calibration). In castt sensitivity values asso-
ciated to uniform hyperpriors are near zesd,Jn1,Un2 = 0.017,S(Un1,Un3 = 0.010,
with calibrated values 0.017 and 0.010, despite the Hallirdjstance between their
corresponding priors being identical in gamma choices.héndase of the half-normal

hyperpriors, the sensitivity associated to HN1 and HN2 ials0.071 and calibrated
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value 0.069) but relevant when comparing HN1 and HS3HN1,HN3) = 0.588 and
calibrated value 0.576).

4.4. Sensitivity of the risk of plot infection

The risk of plot infection was considered the most appragrimeasure to describe re-
sults in Section 3 due to its great relevance in agronomitiessu In this sense, the anal-
ysis of the variability of the estimates from different mbithg prior scenarios could be
an important issue, mainly as a measure of confidence amditiji. As it was defined
in (4), its posterior estimation will depend on the covariategression coefficients and
random effects, which show different patterns regardimpisigity. We carried out a
sensitivity analysis for that on a similar basis as that fext®®n 3: the posterior distribu-
tion of the risk infection was calculated for a generic pitdaed at altitude 76 meters
(the sample median) for each virus and management conglitiithin each hyperprior
scenario.

Table 3 shows the calibration of the Hellinger distance leetwthe posterior distri-
bution of the risk of plot infection for each management d¢tad and virus. Similarly
to the particular behaviour of the regression coefficietits, estimation of the risk of
plot infection seems to be weakly influenced by the diffefergerprior assumptions. In
any case, the discrepancies observed between all the deonmawere not greater than
the difference between the normal distributiofiONL) and N(0.583 1), which reveals
that Hellinger values are in general close to zero. It is Wwoxting that the Hellinger
distance between normal distributiongONL) and N(1,1) is 0.343 (see again Table 4 in
Appendix 2). In a similar manner, the uniform distributidmesd the smallest discrepan-
cies together with half-normal distributions HN1 and HN2owver, as we expected
inferences from HN3 exhibited the greatest discrepan¢i@snma hyperpriors showed
substantial discrepancies, above all between Gal and Gh8ugh these differences

did not exceed those obtained from hyperprior HN3. Thusdtmitcomes seem to in-
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dicate that the particular choice of a hyperprior distiimutinfluences the estimation of
the risk infection weakly but in a major extent that in theeca$ the estimates of the

regression coefficients.

Table 3: Calibration of the Hellinger distance between the postenrginal distribution of
the risk infection computed from hyperprior distributid®Bal and Ga2, Gal and Ga3, Unl and
Un2, Unl and Un3, HN1 and HN2, and HN1 and HN3.

Virus Management (Gal,Ga2) (Gal,Ga3) (Un1,Un2) (Un1,YAB)1,HN2) (HN1,HN3)

ToMV Organic 0.087 0.234 0.011 0.014 0.041 0.583
Non-organic, greenhouse 0.051 0.139 0.011 0.011 0.029 50.35
Non-organic, no greenhouse  0.041 0.100 0.015 0.016 0.031 2680.

CMV Organic 0.079 0.213 0.015 0.014 0.041 0.536
Non-organic, greenhouse 0.039 0.107 0.012 0.010 0.028 50.28
Non-organic, no greenhouse  0.053 0.142 0.009 0.012 0.028 3690.

TSWYV Organic 0.049 0.128 0.026 0.025 0.037 0.323
Non-organic, greenhouse 0.040 0.103 0.014 0.009 0.029 00.28
Non-organic, no greenhouse  0.053 0.142 0.013 0.011 0.030 3800.

There are not so many discrepancies among the posteriorsnaéahe risk of a
plot infection from the different hyperprior scenarios there are many in the posterior
variabilities (see Table 4). We accounted for variabilitygrms of standard deviation be-
cause it is a measure which describes the grade of uncgrtditite quantity of interest
but mainly due to its direct agronomic interpretation. Aagreimilarity in the posterior
standard deviation values is repeatedly appreciated intsederived from Unl, Un2,
Un3, HN2 and HN2 scenarios. The HN3 value was the most differidowever, esti-

mates corresponding to Gal, Ga2 and Ga3 vary the most, alipécithe case of Gal.

Table 4: Posterior standard deviation of the risk of a plot infectimm the full inferential
process based on Gal, Ga2, Ga3, Unl, Un2, Un3, HN1, HN2 andhyiN8rpriors.
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Virus  Management Gal Ga2 Ga3 Unl Un2 Un3 HN1 HN2 HN3

ToMV  Organic 0.136 0.146 0.161 0.184 0.184 0.184 0.183 0.17818
Non-organic, greenhouse 0.217 0.224 0.235 0.252 0.25230.2251 0.248 0.206
Non-organic, no greenhouse 0.118 0.123 0.131 0.147 0.14A4700.147 0.142 0.109

CMV  Organic 0.119 0.127 0.140 0.161 0.161 0.162 0.161 0.156020
Non-organic, greenhouse 0.161 0.166 0.175 0.190 0.19000.0989 0.186 0.151
Non-organic, no greenhouse 0.179 0.186 0.198 0.216 0.224600.215 0.211 0.166

TSWV Organic 0.066 0.071 0.078 0.092 0.093 0.093 0.092 0.08857
Non-organic, greenhouse 0.172 0.178 0.187 0.203 0.20220.2@01 0.198 0.162
Non-organic, no greenhouse 0.185 0.192 0.204 0.223 0.222400.222 0.218 0.172

In this sense, the posterior standard deviation for risk mib&infection exhibits a con-
siderable sensitivity to hyperparameter specification. ifgtance, the risk of a ToMV
infection of a generic plot in an organic management systes egtimated from 0.028
to 0.553 with 95% probability according to Gal scenario,thatsubsequent interval in

the Unl scenario was [0.008,0.734].

5. Discussion

In this paper we have proposed a Bayesian correlated moddVi{@ to study and
compare the risk of several virus infections in tomato angppe plots under different
agroecosystem conditions. First, we estimated severatklmathaintaining model spec-
ification but varying prior scenario default in accordandthwlifferent hyperprior distri-
butions for the random effects scale parameter. Next, wawtird a sensitivity analysis
to select the most stable model, in which effects of managéounditions, altitude and
random individual effects were assessed by estimatingrdift derived quantities con-
sidered to be agronomically relevant.

Regarding the model covariates effect, the risk of plotdtitm was the quantity
chosen to analyse agronomic outcomes. The risk of plottiofeevas estimated in the

framework of mixed infections (with more than one virus) adhas in single infections
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(with only one virus). All the quantities applied for a “geios plot of the population of
each one of the agroecosystems considered. In the caseylef sifections, risk differ-
ence was also used to quantify differences among agrodgeasys Individual random
effects were evaluated by assessing differences in thea#in of the risk of infection
among plots managed under similar agroecosystem corslitidris enables the evalua-
tion of the contribution of the common and of the individulreents in the model, and
therefore the explanatory capacity of covariates.

In the case of mixed infections, organic agroecosystemibigati lower prevalence
for a three viruses joint infection. Non organic plots, ipdedently of the presence of a
greenhouse structure, showed a similar behaviour. Sinfgetions were generally less
prevalent or similar in organic systems than in conventi@man-organic with and with-
out greenhouse), while TSWV and CMYV infections were lesyglent under organic
management; ToMV infection showed a slightly different d&bur pattern possibly
as a consequence of the way it is transmitted (mechanigadrigsion). Altitude ef-
fect was clearly negative in all viruses but displayed cdesible variability among the
three viruses. Random effects behaviour was very regulardiniduals belonging to
non-organic with greenhouse and non-organic with no greese considering that in-
dividual effects did not generate great differences amaoig'frisk infection estimates.
Organic individuals exhibited more variable results irstaspect, but in general we can
assume that all the fixed effects included in the model haved gxplanatory capacity.

Sensitivity analysis was based on the methodology develdgyeRoos and Held
(2017 andRoos et al(2015. Hellinger distance and sensitivity measure, togethén wi
their corresponding calibration, allowed us to assesgeafsacies in the estimation of
the fixed effects (regression coefficients), the randomcsffetandard deviationy, as
well as the “generic” risk of infection among the prior sceos tested. The evaluation

of the posterior mean of the regression coefficients, thehical characterization of the
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marginal posterior distribution af, and the assessment of the standard deviation of the
posterior distribution of the risk of plot infection amorigetseveral modelling scenarios
completed the analysis. The outcomes obtained exhibitedsamsitive behaviour of
the fixed effects to hyperprior alterations with Hellingelues very close to zero and
to each other. Only visual analysis of posterior means edab$ to detect a certain
instability among inferences obtained from models undenmga hyperdistributions.

The estimation ob, showed a highly sensitive behaviour: gamma hyperpriors re-
peatedly exhibited the most relevant differences showheggreatest sensitivity values
and the most divergent posterior distributions. In the edisisk infection estimation, in
spite of all the Hellinger distances were around zero, gammypardistributions showed
interesting differences in terms of the standard deviatioiine posterior distribution of
the risk of plot infection. We therefore agree wighowne and Drapg2006), Roos et al.
(2015, Roos and Held2011), Gelman(2006), andLunn et al.(2009 that gamma hy-
perpriors in hierarchical models lack robustness and atsétysanalysis must be carried
out in the Bayesian hierarchical framework to assess iiétiabf the performance. Fur-
thermore, we also conclude that the “noninformative” natof a hyperprior does not

guarantee its impartiality in the inference process.

Appendix 1. The Hellinger distance

The Helliger distancele Cam 2012 is a symmetric and invariant to any one-to-one
transformation measure of discrepancy between two priityatbistributions, f andg,

defined as follows

o= 3 [ (V- Ve

where 0< H(f,g) < 1, O represents no divergence, and 1 full divergence.

The Hellinger distances between two gamma, uniform andthaiicated distribu-
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tions are

e for gamma densities Gay, 31) and Gdaz, 32)

o ot -3-(252) I
H*(Galay, Br), Galaz, Bp)) = 1-T ( = Maur (a2)(B52)ar + a

e for uniform densities U(0, n1) and U0, n2), with N1 < n2

2 - L
H2(Un(0,n1),Un(0,n,)) = 1 (m)

e for half-normal densities H[0, 0?) and HN0, 02)

1114
of o3

T 1
of 03
2

HZ(HN(0,1),HN(0, 02)) = 1—

In the case of posterior distributiomg(0 | D) and,(0 | D), the Hellinger distance

can be approximated numerically at a finite seliKdhtegration points as follows

(01 2) (81 ) =3 5 (VBT D0 - VO D0 ) B (A1)

NII—‘

where the weightéy are provided by the trapezoidal rule.

Appendix 2. Calibration

The Hellinger distance can be calibrated to evaluate theitapce of the observed dis-
crepancies by means of a reference parameter. Calibraisrundertaken with respect

to the normal distribution with variance one. The Helling&stance between densities
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N(0,1) and N{u,1) is

H(N(0,1),N(1,1)) = /1~ exp(—i2/8),

and consequently

i = /~8log(1— H2(N(0,1),N(u, 1)))
Table A.2.1 shows a range of calibrated valpesith its subsequent Hellinger distance,

H(N(0,1),N(u,1)).

Table A.2.1: Calibration of the Hellinger distance.

H(N(0,1),N(u, 1))

0
0.343
0.627
0.822
0.930
0.978
0.994
0.999
0.999
0.999

1

=

©O© oo ~NO O~ WNELO

=Y
o

The sensitivity measure introduced previously can alsaatibrated. Calibration of

the sensitivity value obtained, has been obtained following the subsequent equation:
C(s.i') = p(sx H(N(0,1),N(1/,1))) (A.2)

Interpretation of calibration can be conditioned by theich®f 1, so that for a value
' = 1, the value ofs, would be comparable with the Hellinger distance obtained b

tween two normal priors, [0,1) and N ' = 1,1) and the subsequent normal posteriors,
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N(0,1) and NC(s,u’ = 1),1). Itis important to note that 6 > 1 thenC(s, u’) > p'; if

s< 1thenC(s ') < p’; and ifs=1thenC(s ') = '.
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