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Abstract

The Weibull distribution is a very applicable model for lifetime data. In this paper, we have

investigated inference on the parameters of Weibull distribution based on record values. We first

propose a simple and exact test and a confidence interval for the shape parameter. Then, in

addition to a generalized confidence interval, a generalized test variable is derived for the scale

parameter when the shape parameter is unknown. The paper presents a simple and exact joint

confidence region as well. In all cases, simulation studies show that the proposed approaches

are more satisfactory and reliable than previous methods. All proposed approaches are illustrated

using a real example.
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1. Introduction

The Weibull distribution is a well-known distribution that is widely used for lifetime

models. It has numerous varieties of shapes and demonstrates considerable flexibil-

ity that enables it to have increasing and decreasing failure rates. Therefore, it is used

for many applications, for example in hydrology, industrial engineering, weather fore-

casting and insurance. The Weibull distribution with parameters α and β , denoted by

W (α,β), has a cumulative distribution function (cdf)

F (x) = 1− e−(
x
α)
β

, x > 0, α> 0, β > 0,

∗ Corresponding author: aajafari@yazd.ac.ir
1 Department of Statistics, Yazd University, Yazd, Iran.

Received: September 2013

Accepted: January 2015
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and probability density function (pdf)

f (x) =
β

αβ
xβ−1e−(

x
α)
β

, x > 0.

The Weibull distribution is a generalization of the exponential distribution and

Rayleigh distribution. Also, Y = log(X) has the Gumbel distribution with parameters

b = 1
β

and a = log(α), when X has a Weibull distribution with parameters α and β .

Let X1,X2, . . . be an infinite sequence of independent identically distributed random

variables from a same population with the cdf Fθ , where θ is a parameter. An observa-

tion X j will be called an upper record value (or simply a record) if its value exceeds that

of all previous observations. Thus, X j is a record if X j > Xi for every i < j. An analogous

definition deals with lower record values. The record value sequence {Rn} is defined by

Rn = XTn , n = 0,1,2, . . . .

where Tn is called the record time of nth record and is defined as Tn =min{ j : X j > XTn−1
}

with T0 = 1.

Let R0, . . . ,Rn be the first n+1 upper record values from the cdf Fθ and the pdf fθ .

Then, the joint distribution of the first n+1 record values is given by

fR (r) = fθ (rn)
n−1

∏
i=0

fθ (ri)

1−Fθ (ri)
, r0 < r1 < · · ·< rn, (1.1)

where r = (r0,r1, . . . ,rn) and R = (R0,R1, . . . ,Rn) (for more details see Arnold et al.,

1998).

Chandler (1952) launched a statistical study of the record values, record times

and inter-record times. Record values and the associated statistics are of interest and

importance in the areas of meteorology, sports and economics. Ahsanullah (1995) and

Arnold et al. (1998) are two good references about records and their properties.

Some papers considered inference on the Weibull distribution based on record

values: Dallas (1982) discussed some distributional results based on upper record values.

Balakrishnan and Chan (1994) established some simple recurrence relations satisfied by

the single and the product moments, and derived the BLUE of the scale parameter when

the shape parameter is known. Chan (1998) provided a conditional method to derive

exact intervals for location and scale parameters of location-scale family that can be

used to derive exact intervals for the shape parameter. Wu and Tseng (2006) provided

some pivotal quantities to test and establish confidence interval of the shape parameter

based on the first n+ 1 observed upper record values. Soliman et al. (2006) derived

the Bayes estimates based on record values for the parameters with respect to squared

error loss function and LINEX loss function. Asgharzadeh and Abdi (2011b) proposed

joint confidence regions for the parameters. Teimouri and Gupta (2012) computed
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the coefficient of skewness of upper/lower record statistics. Teimouri and Nadarajah

(2013) derived exact expressions for constructing bias corrected maximum likelihood

estimators (MLEs) of the parameters for the Weibull distribution based on upper records.

Gouet et al. (2012) obtained the asymptotic properties for the counting process of δ-

records among the first n observations.

In this paper, we consider inference about the parameters of Weibull distribution

based on record values. First, we will propose a simple and exact method for construct-

ing confidence interval and testing the hypotheses about the shape parameter β . Then

using the concepts of generalized p-value and generalized confidence interval, a general-

ized approach for inference about the scale parameter α will be derived. Tsui and Weer-

ahandi (1989) introduced the concept of generalized p-value, and Weerahandi (1993)

introduced the concept of generalized confidence interval. These approaches have been

used successfully to address several complex problems (see Weerahandi, 1995) such

as confidence interval for the common mean of several log-normal distributions (Be-

hboodian and Jafari, 2006), confidence interval for the mean of Weibull distribution

(Krishnamoorthy et al., 2009), inference about the stress-strength reliability involving

two independent Weibull distributions (Krishnamoorthy and Lin, 2010), and comparing

two dependent generalized variances (Jafari, 2012).

We also present an exact joint confidence region for the parameters. Our simulation

studies show that the area of our joint confidence region is smaller than those provided

by other existing methods.

The rest of this article is organized as follows: A simple method for inference about

shape parameter and a generalized approach for inference about the scale parameter are

proposed in Section 2. Furthermore, a simulation study is performed and a real example

is proposed in this Section. We also present a joint confidence region for the parameters

α and β in Section 3.

2. Inference on the parameters

Suppose R0,R1, . . . ,Rn are the first n+1 upper record values from a Weibull distribution

with parameters α and β . In this section, we consider inference on the parameters α and

β . From (1.1), the joint distribution of these record values can be written as

fR (r) =
βn+1

αβ(n+1)
e−(

rn
α )
β n

∏
i=0

ri
β−1 0 < r0 < r1 < · · ·< rn. (2.1)

Therefore, (Rn,∑
n
i=0 log(Ri)) are sufficient statistics for (α,β). Moreover, it can be

easily shown that the MLE’s of the parameters α and β are

β̂ =
n+1

∑
n
i=0 log

(

Rn
Ri

) , α̂=
Rn

(n+1)
1

β̂

. (2.2)
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Theorem 2.1 Let R0,R1, . . . ,Rn be the first n+ 1 upper record values from a Weibull

distribution. Then

i. U = 2β∑
n
i=0 log

(

Rn
Ri

)

has a chi-square distribution with 2n degrees of freedom.

ii. V = 2
(

Rn
α

)β
has a chi-square distribution with 2n+2 degrees of freedom.

iii. U and V are independent.

Proof. i. Define

Qm =
Rm

Rm−1

, m = 1,2, . . . ,n. (2.3)

From Arnold et al. (1998) page 20, Qm’s are independent random variables with

P(Qm > q) = q−βm, q > 1,

and

2βmlog(Qm) = 2βmlog

(

Rm

Rm−1

)

∼ χ2
(2).

Therefore,

U = 2β
n

∑
i=0

log(
Rn

Ri

) = 2β
n−1

∑
i=0

log

(

Rn

Rn−1

.
Rn−1

Rn−2

. . .
Ri+1

Ri

)

= 2β
n−1

∑
i=0

n

∑
m=i+1

log

(

Rm

Rm−1

)

= 2β
n

∑
m=1

m−1

∑
i=0

log(Qm) =
n

∑
m=1

2βmlog(Qm),

has a chi-square distribution with 2n degrees of freedom.

ii. Define

Y =

(

X

α

)β

,

where X has a Weibull distribution with parameters α and β . Then, Y has an exponential

distribution with parameter one. Therefore, we can conclude that V has a chi-square

distribution with 2n+2 degrees of freedom (see Arnold et al., 1998, page 9).

iii. Let β be known. Then, it can be concluded from (2.1) that Rn is a complete sufficient

statistic for α. Also, Qm’s in (2.3) are ancillary statistics. Therefore, Rn and Qm’s are

independent, and the proof is completed.
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2.1. Inference on the shape parameter

Here, we consider inference on the shape parameter, β from a Weibull distribution

based on record values, and propose a simple and an exact method for constructing

a confidence interval and testing the one-sided hypotheses

H0 : β ≤ β0 vs. H1 : β > β0, (2.4)

and the two-sided hypotheses

H0 : β = β0 vs. H1 : β 6= β0, (2.5)

where β0 is a specified value.

Based on Theorem 2.1, U = 2β∑
n
i=0 log

(

Rn
Ri

)

has a chi-square distribution with 2n

degrees of freedom. Therefore, a 100(1−γ)% confidence interval for β can be obtained

as





χ2
(2n),γ/2

2∑
n
i=0 log

(

Rn
Ri

) ,
χ2
(2n),1−γ/2

2∑
n
i=0 log

(

Rn
Ri

)



 , (2.6)

where χ2
(k),γ is the γth percentile of the chi-square distribution with k degrees of freedom.

Also, for testing the hypotheses in (2.4) and (2.5), we can define the test statistic

U0 = 2β0

n

∑
i=0

log

(

Rn

Ri

)

,

and the null hypothesis in (2.4) is rejected at nominal level γ if

U0 > χ
2
(2n),1−γ,

and the null hypothesis in (2.5) is rejected if

U0 < χ
2
(2n),γ/2 or U0 > χ

2
(2n),1−γ/2.

Wu and Tseng (2006) proposed the random variable

W (β) =
∑

n
i=0 R

β
i

(n+1)(∏n
i=0 Ri)

β
n+1

,
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for inference about the shape parameter, and showed that W (β) is an increasing function

with respect to β . Also, its distribution does not depend on the parameters α and β . In

fact, W (β) is distributed as

W ∗ =
∑

n
i=0 R∗

i

(n+1)(∏n
i=0 R∗

i )
1

n+1

,

where R∗
i is the ith record from the exponential distribution with parameter one. How-

ever, its exact distribution is very complicated, and Wu and Tseng (2006) obtained the

percentiles of W (β) using Monte Carlo simulation. The confidence limits for β are

obtained by solving the following equations numerically as

W (β) =W ∗
1−γ/2, W (β) =W ∗

γ/2, (2.7)

where W ∗
δ is the δth percentile of the distribution of W ∗.

2.2. Inference on the scale parameter

Here, we consider inference about the scale parameter, α for a Weibull distribution based

on record values, and propose an approach for constructing a confidence interval and

testing the one-sided hypotheses

H0 : α≤ α0 vs. H1 : α> α0, (2.8)

and the two-sided hypotheses

H0 : α= α0 vs. H1 : α 6= α0, (2.9)

where α0 is a specified value.

We did not find any approach in literature for inference about α based on record

values when the shape parameter is unknown. Here, we use the concepts of generalized

p-value and generalized confidence interval introduced by Tsui and Weerahandi (1989),

and Weerahandi (1993), respectively. In the Appendix, we briefly review these concepts,

and refer readers to Weerahandi (1995) for more details.

Let

T = rn

(

2

V

)
2Cr
U

= rn

(

α

Rn

)
Cr

∑n
i=0

log(Rn
Ri

)
, (2.10)

where Cr =∑
n
i=0 log

(

rn
ri

)

, and ri, i= 0,1, . . . ,n is the observed value of Ri, i= 0,1, . . . ,n,

and U and V are independent random variables that are defined in Theorem 2.1. The
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observed value of T is α, and distribution of T does not depend on unknown parameters

α and β . Therefore, T is a generalized pivotal variable for α, and can be used to construct

a generalized confidence interval for α.

Let

T ∗ = T −α= rn

(

2

V

)
2Cr
U

−α.

Then, T ∗ is a generalized test variable for α, because i) the observed value of T ∗ does

not depend on any parameters, ii) the distribution function of T ∗ is free from nuisance

parameters and only depends on the parameter α, and iii) the distribution function of

T ∗ is an increasing function with respect to the parameter α, and so, the distribution of

T ∗ is stochastically decreasing in α. Therefore, the generalized p-value for testing the

hypotheses in (2.8) is given as

p = P(T ∗ < 0|H0) = P(T < α0) , (2.11)

and the generalized p-value for testing the hypotheses in (2.9) is given as

p = 2 min{P(T > α0) ,P(T < α0)}. (2.12)

The generalized confidence interval for α based on T , and the generalized p-values

in (2.11) and (2.12) can be computed using Monte Carlo simulation (Weerahandi, 1995;

Behboodian and Jafari, 2006) based on the following algorithm:

Algorithm 2.1 For given r0,r1, . . . ,rn,

1. Generate U ∼ χ2
(2n) and V ∼ χ2

(2n+2).

2. Compute T in (2.10).

3. Repeat steps 1 and 2 for a large number times, (say M = 10000), and obtain the

values T1, . . . ,TM.

4. Set Dl = 1 if Tl < α0 else Dl = 0, l = 1, ...,M.

The 100(1−γ)% generalized confidence interval for α is
[

T(γ/2),T(1−γ/2)

]

, where

T(δ) is the δth percentile of Tl’s. Also, the generalized p-value for testing the one-sided

hypotheses in (2.11) is obtained by 1
M ∑

M
l=1 Dl .

2.3. Real example

Roberts (1979) gave monthly and annual maximal of one-hour mean concentration of

sulfur dioxide (in pphm, parts per hundred million) from Long Beach, California, for

1956 to 1974. Chan (1998) showed that the Weibull distribution is a reasonable model



10 Inference on the parameters of the Weibull distribution using records

for this data set. Wu and Tseng (2006) also study this data set. The upper record values

for the month of October from the data are

26,27,40,41.

The 95% confidence interval for the scale parameter α based on our generalized con-

fidence interval with M = 10000 is obtained as (5.4869,39.9734). The 95% confidence

interval for the shape parameter β in (2.6) is obtained as (0.6890,8.0462), and based on

Wu and Tseng’s method in (2.7) is obtained as (0.6352,7.7423). Also, the generalized

p-value is equal to 0.0227 for testing the hypotheses in (2.8) with α0 = 5. Therefore, the

null hypothesis is rejected.

2.4. Simulation study

We performed a simulation study in order to evaluate the accuracy of the proposed

methods for constructing confidence interval for the parameters of Weibull distribution.

For this purpose, we generated n + 1 record values from a Weibull distribution, and

considered α= 1,2. For the simulation with 10000 runs and different values of the shape

parameter β , the empirical coverage probabilities and expected lengths of the methods

with the confidence coefficient 0.95 were obtained. The results of our generalized

confidence interval for inference on α using the algorithm 2.1 with M = 10000 are

presented in Table 1, and the results of our exact method (E) and the Wu method (W)

for inference on β are given in Table 2. We can conclude that

Table 1: Empirical coverage probabilities and expected lengths of the generalized confidence interval for

the parameter α with confidence level 0.95.

β

α n 0.5 1.0 1.2 1.5 2.0 3.0 5.0

Empirical 1.0 3 0.951 0.949 0.953 0.947 0.947 0.948 0.948

Coverage 7 0.952 0.949 0.950 0.950 0.951 0.953 0.952

9 0.951 0.948 0.953 0.951 0.948 0.949 0.950

14 0.945 0.949 0.950 0.950 0.954 0.952 0.952

2.0 3 0.949 0.952 0.947 0.949 0.951 0.950 0.953

7 0.948 0.953 0.950 0.946 0.954 0.948 0.951

9 0.952 0.948 0.953 0.950 0.952 0.953 0.954

14 0.950 0.946 0.949 0.951 0.951 0.952 0.955

Expected 1.0 3 16.740 3.581 2.804 2.155 1.653 1.211 0.847

Length 7 13.575 3.198 2.477 1.942 1.475 1.041 0.686

9 13.505 3.138 2.469 1.918 1.446 1.008 0.651

14 13.122 3.082 2.403 1.854 1.376 0.943 0.596

2.0 3 33.516 7.187 5.579 4.341 3.323 2.427 1.704

7 27.960 6.344 4.999 3.899 2.960 2.080 1.364

9 27.342 6.304 4.935 3.831 2.890 2.016 1.302

14 26.626 6.129 4.779 3.705 2.757 1.886 1.191
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Table 2: Empirical coverage probabilities and expected lengths of the methods for constructing confidence

interval for the parameter β with confidence level 0.95.

β

α n Method 0.5 1.0 1.2 1.5 2.0 3.0 5.0

Empirical 1.0 3 W 0.950 0.952 0.952 0.949 0.949 0.953 0.947

Coverage E 0.949 0.953 0.953 0.950 0.948 0.953 0.946

7 W 0.951 0.949 0.950 0.948 0.949 0.949 0.953

E 0.951 0.950 0.948 0.950 0.953 0.953 0.950

9 W 0.949 0.949 0.945 0.949 0.947 0.949 0.950

E 0.948 0.950 0.948 0.948 0.949 0.952 0.949

14 W 0.946 0.949 0.951 0.951 0.953 0.949 0.951

E 0.947 0.948 0.950 0.951 0.953 0.952 0.952

2.0 3 W 0.954 0.955 0.948 0.950 0.950 0.952 0.949

E 0.953 0.953 0.947 0.949 0.949 0.952 0.950

7 W 0.950 0.955 0.947 0.948 0.952 0.947 0.948

E 0.949 0.952 0.951 0.948 0.952 0.947 0.950

9 W 0.953 0.948 0.956 0.950 0.953 0.951 0.952

E 0.952 0.948 0.951 0.951 0.953 0.951 0.953

14 W 0.948 0.947 0.949 0.950 0.951 0.951 0.952

E 0.950 0.947 0.949 0.949 0.953 0.951 0.955

Expected 1.0 3 W 1.704 3.431 4.194 5.279 6.913 10.396 17.479

Length E 1.630 3.285 4.013 5.041 6.611 9.937 16.722

7 W 0.932 1.879 2.224 2.808 3.752 5.578 9.276

E 0.853 1.716 2.038 2.574 3.437 5.115 8.499

9 W 0.806 1.603 1.928 2.412 3.222 4.797 8.024

E 0.730 1.450 1.748 2.185 2.928 4.352 7.267

14 W 0.625 1.262 1.509 1.888 2.505 3.766 6.263

E 0.558 1.125 1.343 1.685 2.236 3.353 5.590

2.0 3 W 1.713 3.458 4.156 5.277 6.856 10.307 16.998

E 1.638 3.306 3.967 5.053 6.560 9.859 16.266

7 W 0.934 1.866 2.208 2.822 3.738 5.629 9.392

E 0.854 1.710 2.026 2.589 3.419 5.151 8.581

9 W 0.808 1.600 1.923 2.418 3.189 4.798 8.032

E 0.733 1.451 1.743 2.193 2.890 4.347 7.276

W 0.628 1.260 1.496 1.888 2.523 3.768 6.302

E 0.560 1.124 1.338 1.688 2.250 3.366 5.624

i. The empirical coverage probabilities of all methods are close to the confidence

level 0.95.

ii. The expected lengths of E and W increase when the parameter β increases.

Additionally, the expected length of E is smaller than W especially when β is

large.
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iii. The expected length of our generalized confidence interval for α decreases when

the parameter β increases. Moreover, it is very large when β is small.

iv. The expected lengths of all methods decrease when the number of records in-

creases.

v. The empirical coverage probabilities and expected lengths of W and E do not

change when the parameter α changes.

3. Joint confidence regions for the parameters

Suppose R0,R1, . . . ,Rn are the first n+1 upper record values from a Weibull distribution

with parameters α and β . In this section, we presented a joint confidence region for

the parameters α and β . This is important because it can be used to find confidence

bounds for any function of the parameters such as the reliability function R(t) =

exp(−( t
α
)β). For more references about the joint confidence region based on records,

see Asgharzadeh and Abdi (2011a,b) and Asgharzadeh et al. (2011).

3.1. Asgharzadeh and Abdi method

Asgharzadeh and Abdi (2011b) present exact joint confidence regions for the parameters

of Weibull distribution based on the record values using the idea presented by Wu

and Tseng (2006). The following inequalities determine 100(1−γ)% joint confidence

regions for α and β :

A j =































log
((

n− j+1
j

)

k1 +1
)

log
(

Rn
R j−1

) < β <
log
((

n− j+1
j

)

k2 +1
)

log
(

Rn
R j−1

)

Rn

(

2

χ2
(2n+2),(1+

√
1−γ)/2

) 1
β

< α< Rn

(

2

χ2
(2n+2),(1−√

1−γ)/2

) 1
β

,

(3.1)

for j = 1, . . . ,n, where

k1 = F(2n−2 j+2,2 j),(1−√
1−γ)/2 k2 = F(2n−2 j+2,2 j),(1+

√
1−γ)/2,

and F(a,b),γ is the γth percentile of the F distribution with a and b degrees of freedom.

Note that for each j, we have a joint confidence region for α and β . Asgharzadeh

and Abdi (2011b) found that in most cases A⌊ n+1
5

⌋ and A⌊ n+1
5

+1⌋ provide the smallest

confidence areas, where ⌊x⌋ is the largest integer value smaller than x.
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3.2. A new joint confidence region

From Theorem 2.1, U = 2β∑
n
i=0 log

(

Rn
Ri

)

has a chi-square distribution with 2n degrees

of freedom and V = 2
(

Rn
α

)β
has a chi-square distribution with 2n+2 degrees of freedom,

and U and V are independent. Therefore, an exact joint confidence region for the

parameters α and β of Weibull distribution based on the record values can be given

as

B =



























χ2
(2n),(1−√

1−γ)/2

2∑
n
i=0 log

(

Rn
Ri

) < β <
χ2
(2n),(1+

√
1−γ)/2

2∑
n
i=0 log

(

Rn
Ri

)

Rn

(

2

χ2
(2n+2),(1+

√
1−γ)/2

) 1
β

< α< Rn

(

2

χ2
(2n+2),(1−√

1−γ)/2

) 1
β

.

(3.2)

Remark 3.1 All record values are used in the proposed joint confidence region in (3.2)

but not in the proposed joint confidence regions in (3.1).

3.3. Real example

Here, we consider the upper record values in the example given in Section 2.3. There-

fore, the 95% joint confidence regions for α and β based on Asgharzadeh and Abdi

(2011b) in (3.1) are

A1 =
{

(α,β) : 0.5826 < β < 11.9955, 41(0.1029)
1
β < α< 41(1.1318)

1
β

}

A2 =
{

(α,β) : 0.1646 < β < 6.4905, 41(0.1029)
1
β < α< 41(1.1318)

1
β

}

A3 =
{

(α,β) : 0.1720 < β < 58.9824, 41(0.1029)
1
β < α< 41(1.1318)

1
β

}

and the 95% joint confidence region for α and β in (3.2) is

B =
{

(α,β) : 0.5305 < β < 9.0277, 41(0.1029)
1
β < α< 41(1.1318)

1
β

}

.

The plot of all joint confidence regions are given in Figure 1. Also, the area of

the joint confidence regions A1, A2, A3, and B are 194.9723, 166.7113, 369.7654, and

172.5757, respectively.
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Figure 1: The plot of the joint confidence regions A1, A2, A3, and B.

3.4. Simulation study

We performed a similar simulation given in Section 2.4 with considering α= 1, in order

to compare the joint confidence regions proposed by Asgharzadeh and Abdi (2011b)

and our joint confidence region (B) in (3.2). Here, we consider the confidence areas

A⌊ n+1
5

⌋ and A⌊ n+1
5

+1⌋ because the coverage probabilities of all Ai’s are close to the

confidence coefficient and Asgharzadeh and Abdi (2011b) found that in most cases these

two confidence areas provide the smallest confidence areas. The empirical coverage

probabilities and expected areas of the methods for the confidence coefficient 95% are

given in Table 3. We can conclude that

1. The coverage probabilities of the all methods are close to the confidence coeffi-

cient 0.95.

2. The expected area of our method is smaller than the expected areas of the proposed

methods by Asgharzadeh and Abdi (2011b).

3. The expected areas of all methods decrease when the number of records increases.

4. The expected areas of all methods decrease when the parameter β increases.
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Table 3: Empirical coverage probabilities of the methods for constructing joint confidence region for the

parameters α and β with γ= 0.05.

β

n Region 0.5 1.0 1.2 1.5 2.0 3.0 5.0

Coverage 4 A1 0.950 0.949 0.949 0.951 0.954 0.946 0.950

Probability A2 0.949 0.951 0.950 0.951 0.953 0.949 0.952

B 0.949 0.950 0.949 0.952 0.954 0.949 0.950

6 A1 0.951 0.951 0.952 0.952 0.954 0.949 0.949

A2 0.952 0.948 0.950 0.948 0.953 0.948 0.952

B 0.953 0.949 0.951 0.951 0.953 0.950 0.951

9 A2 0.953 0.949 0.950 0.955 0.949 0.948 0.953

A3 0.951 0.951 0.951 0.956 0.949 0.948 0.949

B 0.950 0.952 0.951 0.953 0.949 0.948 0.952

14 A3 0.947 0.950 0.954 0.948 0.954 0.951 0.952

A4 0.946 0.951 0.952 0.948 0.951 0.950 0.952

B 0.948 0.949 0.952 0.947 0.951 0.953 0.952

29 A6 0.951 0.953 0.950 0.950 0.948 0.948 0.950

A7 0.950 0.952 0.951 0.949 0.948 0.948 0.950

B 0.953 0.955 0.951 0.953 0.950 0.948 0.952

Expected 4 A1 27.787 8.548 7.339 6.331 5.725 5.330 5.203

Area A2 30.020 8.976 7.651 6.682 5.989 5.593 5.504

B 22.985 7.371 6.388 5.596 5.099 4.792 4.713

6 A1 21.062 6.036 5.213 4.576 4.102 3.783 3.701

A2 20.035 5.824 5.046 4.436 3.985 3.701 3.648

B 14.551 4.714 4.144 3.714 3.399 3.192 3.162

9 A2 14.631 4.081 3.533 3.059 2.756 2.574 2.510

A3 14.651 4.086 3.545 3.077 2.767 2.585 2.541

B 9.639 3.137 2.774 2.471 2.275 2.160 2.133

14 A3 9.436 2.702 2.320 2.035 1.816 1.701 1.661

A4 9.388 2.686 2.304 2.035 1.812 1.707 1.668

B 5.784 1.999 1.763 1.599 1.471 1.405 1.385

29 A6 4.244 1.298 1.124 0.988 0.905 0.849 0.828

A7 4.202 1.291 1.118 0.985 0.904 0.850 0.828

B 2.380 0.932 0.838 0.761 0.719 0.689 0.678

Appendix. Generalized p-value and generalized confidence interval

Let X be a random variable whose distribution depends on a parameter of interest θ ,

and a nuisance parameter λ. Let x denote the observed value of X. A generalized pivotal

quantity for θ is a random quantity denoted by T (X;x;θ ) that satisfies the following

conditions:

(i) The distribution of T (X;x;θ ) is free of any unknown parameters.
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(ii) The value of T (X;x;θ ) at X = x, i.e., T (x;x;θ ) is free of the nuisance parameter λ.

Appropriate percentiles of T (X;x;θ ) form a confidence interval for θ . Specifically, if

T (x;x;θ )= θ , and Tδ denotes the 100δ percentage point of T (X;x;θ ) then (Tγ/2, T1−γ/2)

is a 1−γ generalized confidence interval for θ . The percentiles can be found because,

for a given x, the distribution of T (X;x;θ ) does not depend on any unknown parameters.

In the above setup, suppose we are interested in testing the hypotheses

H0 : θ ≤ θ0 vs. H1 : θ > θ0, (A.1)

for a specified θ0. The generalized test variable, denoted by T ∗(X;x;θ ), is defined as

follows:

(i) The value of T ∗(X;x;θ ) at X = x is free of any unknown parameters.

(ii) The distribution of T ∗(X;x;θ ) is stochastically monotone (i.e., stochastically in-

creasing or stochastically decreasing) in θ for any fixed x and λ.

(iii) The distribution of T ∗(X;x;θ ) is free of any unknown parameters.

Let t∗ = T ∗ (x;x;θ0), the observed value of T ∗(X;x;θ ) at (X;θ ) = (x;θ0). When

the above conditions hold, the generalized p-value for testing the hypotheses in (A.1) is

defined as

p = P(T ∗ (X;x;θ0)≤ t∗) (A.2)

where T ∗(X;x;θ ) is stochastically decreasing in θ . The test based on the generalized

p-value rejects H0 when the generalized p-value is smaller than a nominal level γ.

However, the size and power of such a test may depend on the nuisance parameters.
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Gouet, R., López, F. J. and Sanz, G. (2012). On δ-record observations: asymptotic rates for the counting

process and elements of maximum likelihood estimation. Test, 21, 188–214.

Jafari, A. A. (2012). Inferences on the ratio of two generalized variances: independent and correlated cases.

Statistical Methods and Applications, 21, 297–314.

Krishnamoorthy, K. and Lin, Y. (2010). Confidence limits for stress-strength reliability involving Weibull

models. Journal of Statistical Planning and Inference, 140, 1754–1764.

Krishnamoorthy, K., Lin, Y. and Xia, Y. (2009). Confidence limits and prediction limits for a Weibull dis-

tribution based on the generalized variable approach. Journal of Statistical Planning and Inference,

139, 2675–2684.

Roberts, E. (1979). Review of statistics of extreme values with applications to air quality data: Part ii.

applications. Journal of the Air Pollution Control Association, 29, 733–740.

Soliman, A. A., Abd Ellah, A. H. and Sultan, K. S. (2006). Comparison of estimates using record statistics

from Weibull model: Bayesian and non-Bayesian approaches. Computational Statistics and Data

Analysis, 51, 2065–2077.

Teimouri, M. and Gupta, A. K. (2012). On the Weibull record statistics and associated inferences. Statistica,

72, 145–162.

Teimouri, M. and Nadarajah, S. (2013). Bias corrected MLEs for the Weibull distribution based on records.

Statistical Methodology, 13, 12–24.

Tsui, K. W. and Weerahandi, S. (1989). Generalized p-values in significance testing of hypotheses in the

presence of nuisance parameters. Journal of the American Statistical Association, 84, 602–607.

Weerahandi, S. (1993). Generalized confidence intervals. Journal of the American Statistical Association,

88, 899–905.

Weerahandi, S. (1995). Exact Statistical Methods for Data Analysis. Springer Verlag, New York.

Wu, J. W. and Tseng, H. C. (2006). Statistical inference about the shape parameter of the Weibull

distribution by upper record values. Statistical Papers, 48, 95–129.




