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1 Simulation study

In this section, the simulation study presented in the main paper is completed with some addi-

tional experiments. The simulation study shown in the main paper tried to mimic the asymptotic

conditions on l̄ in Assumption 3.4. Although it can be of interest to analyze situations in which

it is ideally observed the sample size increasing and the average length decreasing at different

rates, in practice that seldom really occurs. The simulation study presented here deals with a

more factual situation in which there is a given sample size and a given set of fixed intervals.

For this simulation, a sample size of n = 240, a fixed set of average lengths and a grid of val-

ues for h were considered. As the populational density, we used the same normal mixture to that

employed in the simulation study presented in the main paper: f (x) =
∑4

i=1αiφµi ,σi
, with φµ,σ a

N
(

µ,σ2
)

density, α= (0.70,0.22,0.06,0.02), µ= (207,237,277,427) and σ = (25,20,35,50),
where α, µ and σ are the mixture weights, means and standard deviations, respectively.

These were the steps followed:

1. Simulate an n-size sample from the normal mixture reference density f .

2. Divide the data range into intervals such that its average length is l̄.

3. Select h and compute MISEg.

4. Repeat the previous steps considering a grid of possible pairs
(

l̄,h
)

.

Figure 1 shows the natural logarithms of MISEg as function of the average length, l̄, and the

bandwidth, h, for a fixed sample size of n = 240. From the practical viewpoint, it seems inter-

esting the minimum closest to the bottom left, where the estimator reaches its best performance

and clearly corresponds to light grouping cases. This area is characterized by an average interval

length of l̄ ≈ 23 units or less, or dividing by the average range r, by a ratio l̄/r ≈ 0.08 or less,

which gives a clue about when a good performance of the estimator F̂
g

h
, given in equation (5) of

the main paper, is expected in a practical situation, as long as the sample size is about 240.
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Figure 1: Natural logarithm of MISEg (gray scale) by bandwidth, h, and average length, l̄, for a fixed
sample size n = 240.
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Figure 2: Sampling distribution of ĥPBg
/hMISEg

(yellow left box-plots for each value of l̄) and sampling

distribution of h∗MISE/hMISEg
(green right box-plots for each value of l̄), for different average lengths and

sample size n=240. Red dotted lines are plotted at values 0.9 and 1.1 for reference.

Figure 2 shows the performance of the plug-in bandwidth, ĥPBg , and the bootstrap selector,

h∗MISE , given in equations (15) and (17) of the main paper, respectively, for different values of l̄. It

is observed that while the sampling distribution of ĥPBg has, more or less, constant variability for

different values of l̄, it is also clearly biased. The plug-in selectors are larger than the target value

for small or moderate values of l̄, and smaller than the optimal bandwidth for large values of l̄. On

the other hand, the sampling distribution of the bootstrap smoothing parameter, h∗MISE , seems to

be very stable, always centered somewhere around hMISEg and with decreasing variability when

the average length l̄ increases.

Figure 3 shows a visual example of what may happen when estimating the distribution func-

tion for small or large interval average lengths, specifically, for l̄ = 5 and l̄ = 50. In the case of

l̄ = 5 (left panel), using the optimal hMISEg and the estimated bandwidths, ĥPBg and h∗MISE , the

three estimates are indistinguishable. Although ĥPBg takes a value of 8.87, slightly larger than

hMISEg = 7.03 and h∗MISE = 7.14, this seems not to have an important influence in the final dis-

tribution estimation. Something similar can be observed in the large grouping case with l̄ = 50

(right panel). In this case, ĥPBg = 12.72 is smaller than the optimal bandwidth, hMISEg = 14.71,

and the bootstrap selector, h∗MISE = 14.82, but once again the corresponding cdf estimates present

a very similar shape. This fact reinforces the argument given at the end of the Simulation Section

of the main paper, pointing out that bandwidth selection is not so critical in distribution as in den-

sity estimation, since slightly different bandwidths produce very similar distribution estimates.

2 An empirical study from real data

In this section, a real data empirical study was performed considering the time between eruptions

of the Old Faithful geyser in the Yellowstone National Park, Wyoming, United States. The data

set is available in the R environment for statistical computing. It is worth noting that the sample

size of this data set is 272, similar to 240, the sample size considered in the previous simulation

study, which favors for comparison.
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Figure 3: Kernel estimation using estimator F̂
g
h

with a sample of size 240. In (a) l̄ = 5 and bandwidths

hMISEg
= 7.03 (red dashed-dotted line), ĥPBg

= 8.87 (yellow dashed line), and h∗MISE = 7.14 (green dotted

line). In (b), l̄ = 50 and hMISEg
= 14.71 (red dashed-dotted), ĥPBg

= 12.72 (yellow dashed line), and

h∗MISE = 14.82 (green dotted line). In both, black solid lines represent the mixture reference distribution.

In this case, instead of considering a data set already collected in a grouped way, for instance,

the real emergence data set of Avena sterilis (wild oat) presented in the main paper, we have

preferred to apply the new approaches to different grouped data sets constructed from a specific

complete real sample. This allows to verify the behavior of the bandwidth selectors as well as the

distribution estimator in a concrete situation with a fixed sample size and under different grouping

scenarios. To do this, first, we grouped the data in intervals, considering sets of intervals with

different average interval lengths. As a grouping measure, the ratio ω = l̄/r, with r denoting the

data range, was used. Note that, in this case, we do not know the theoretical distribution function.

So, for the sake of comparison, we considered as a benchmark distribution that provided by the

standard kernel distribution estimator F̂h for complete data, given in equation (2) of the main

paper. To compute F̂h, the Polansky and Baker bandwidth, ĥPB, and the bootstrap bandwidth

with complete data, h∗boot , for complete data, were used. Almost identical results were obtained

in both cases.

Figure 4 shows the logarithm of the ratio ISD

(

F̂
g

ĥPBg

)

/ISD
(

F̂
g

h∗
MISE

)

, with ISD

(

F̂
g

ĥPBg

)

being the integrated squared distance of F̂
g

ĥPBg

with respect to F̂
ĥ
,

ISD

(

F̂
g

ĥPBg

)

=

∫

[

F̂
g

ĥPBg

(u)− F̂
ĥ
(u)

]2

du,

where F̂
ĥ

is the standard kernel distribution estimator for complete data, using ĥ = ĥPB or ĥ =

h∗boot . A similar definition is used for ISD
(

F̂
g

h∗MISE

)

, but changing ĥPBg by h∗MISE . The left panel

shows the results obtained using the Polansky and Baker bandwidth ĥPB, and the right panel those

when employing the kernel distribution estimator with bootstrap bandwidth, h∗boot , as a reference.



Both figures present a very similar pattern, no matter if the standard kernel distribution estimator

for complete data was used with ĥ = ĥPB or with ĥ = h∗boot as a reference. It can be observed that,

in general, for all ω values, the logarithms of the ratios are larger than zero or, in other words,

ISD

(

F̂
g

ĥPBg

)

is, in general, larger than ISD
(

F̂
g

h∗MISE

)

, showing a better performance of h∗MISE

with respect to ĥPBg . Note also that only for some very large values of ω, very high values of

the ratio were obtained. Therefore, it was necessary to consider a really heavy grouped data case

to start noticing the poor performance of the bandwidth selector ĥPBg as well as the estimator

F̂
g
h , with respect to using h∗MISE . This seems to confirm the idea that even though the selected

bandwidth is not too close to the optimal, the effect on the distribution estimate is not that severe,

unless the grouping effect is really heavy.
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Figure 4: Natural logarithm of ISD

(

F̂
g

ĥPBg

)

/ISD
(

F̂
g
h∗MISE

)

using F̂
ĥPB

(left panel) and F̂
ĥbootg

(right panel)

as a reference, versus ω = l̄/r.

To check the effect on the distribution estimator F̂
g
h of the bandwidth selectors ĥPBg and

h∗MISE , the distribution estimates using F̂h with ungrouped data and ĥPB, as well as F̂
g
h with

ĥPBg and h∗MISE for different values of ω are presented in Figure 5. It can be observed that

even though the smoothing parameters are quite different, the shape of the distribution estimates

are practically identical. This shows from another perspective that distribution estimation is a

resistant procedure against grouping effects.

Considering that, in practice, the best results are obtained when the data are not grouped and

the standard kernel distribution estimator F̂h is used, we performed a new simulation experiment

to evaluate the average performance of the estimator F̂
g
h (using ĥPBg and h∗MISE ) with respect to

F̂h using ĥPB (similar results were obtained when using h∗boot instead of ĥPB). For this, resamples

with replacement were taken from the original data and were grouped using different values of

ω. Then, ρ= ISD
(

F̂
g
h

)

/MISD
(

F̂
ĥPB

)

was calculated, for h = ĥPBg and h = h∗MISE , where MISD
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Figure 5: Kernel distribution estimation: (a) using the standard estimator F̂h with ungrouped data and

ĥPB = 2.01; (b) using F̂
g
h

with ω = 0.05, ĥPBg
= 2.56 and h∗MISE = 1.72; (c) using F̂

g
h

with ω = 0.08,

ĥPBg
= 3.01 and h∗MISE = 1.87; (d) using F̂

g
h

with ω = 0.15, ĥPBg
= 3.66 and h∗MISE = 2.56. In all four

cases, the solid line represents the kernel distribution estimation using F̂h (ungrouped data), while the

yellow dashed lines are the kernel distribution estimations using F̂
g
h

(grouped data) and ĥPBg
, and the green

dotted lines the kernel distribution estimations using F̂
g
h

(grouped data) and h∗MISE .

denotes the mean integrated squared distance, given by

MISD

(

F̂
g

ĥPBg

)

= E

∫

[

F̂
g

ĥPBg

(u)− F̂
ĥ
(u)

]2

du.

In order to obtain the average trend, the process was repeated B = 1000 times.

Figure 6 shows the result of computing log10 ρ for a fine grid of values of ω. Left panel

presents the results for ĥPBg and right panel those for h∗MISE . What ρ measures is how much the

error of the distribution estimate is increasing due to the degree of groupingω. Both plots show a

similar pattern, for small values of ω up to ω ≈ 0.10, the estimates perform on average as if there

were no grouping. Beyond this value is where the grouping effect becomes important. Yet, note

that for ω = 0.20 (i.e., around 5 intervals), log10ρ ≈ 0.3366 on average, which means that the

error of the estimates merely increased by around 100.3366
≈ 2.17 times due to the grouping ef-

fect, and for very heavy grouping, like ω = 0.27 (i.e., around just 4 intervals), the error increased

100.75
≈ 5.6 times due to the grouping effect.

3 Pilot bandwidth selection in the bootstrap bandwidth

As pointed out in the main paper, an important step in the bootstrap bandwidth selector pro-

posed in Section 4.2 of the manuscript is that of selecting the pilot bandwidth ζ. In the paper,

a method inspired by the idea of smoothing splines, based on selecting the pilot parameter that

minimizes the squared distance between the nonparametric cdf estimator and the empirical dis-

tribution function, plus a penalty term to avoid obtaining very small bandwidths is proposed.

Although this approach seems to be a bit convoluted, we have explored other (simpler) alter-
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Figure 6: log10(ρ) versus ω for the Old Faithful geyser data set. Left panel shows the results for ĥPBg

and

right panel the results for h∗MISE .

natives to select the pilot bandwidth, obtaining worse results. As an illustration, in this section,

some simulation experiments comparing the performance of the bootstrap bandwidth when the

pilot bandwidth is selected using the method described in the paper and when it is selected using

the plug-in technique are presented.

In this simulation study, we used the function bw.dist.binned.boot included in the R pack-

age binnednp. This library was developed by the authors of this paper, jointly with a weed

scientist and two computer engineers, and contains some functions implementing most of the

nonparametric methods for grouped data (and related problems), studied by the authors in this

and in previous papers. Specifically, the function bw.dist.binned.boot allows to compute the

bootstrap bandwidth following the approach described in the main paper. As an argument of this

function, the user can choose the way of selecting the corresponding pilot bandwidth. This can

be a fixed value chosen by the user, or a parameter automatically selected either by the method

described in the paper or using a plug-in method.

As a first model in this comparison, we used a normal mixture f (x) =
∑3

i=1αiφµi ,σi
, with

φµ,σ a N
(

µ,σ2
)

density, α = (0.33,0.33,0.33), µ = (14,22,30) and σ = (2.5,2.5,2.5), where

α, µ and σ are the mixture weights, means and standard deviations, respectively. A sample size

of n = 200 was considered. Additionally, we used two grouping degrees, fixing the number of

intervals in k = 10 and k = 30. In Figure 7, the box-plots of the ratios between the bootstrap

bandwidth, h∗MISE , given in equation (17) of the main paper, and the MISE optimal bandwidth,

hMISEg , are shown. Left box-plots correspond to the bootstrap bandwidths when, as pilot band-

width, we use the plug-in bandwidth, ĥPBg , given in equation (15) of the paper. Right box-plots

present the case of using ζλemp, obtained as described in Section 4.2 of the main paper, as the pilot

bandwidth. Box-plots in left panel show the results for k = 10 intervals and those in right panel

the ones for k = 30 intervals.
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Figure 7: Box-plots for
h∗MISE

hMISEg
. Left box-plots correspond to the bootstrap bandwidths when, as pilot

bandwidth, we use the plug-in bandwidth, ĥPBg
. Right box-plots present the case of using ζλemp as the pilot

bandwidth. Left panel shows the results for k = 10 and right panel for k = 30 intervals.

In the second part of the study, we used exactly the same model and the same grouping

scenarios as those described in detail in the main paper. This means that, as the population

density, we used a normal mixture f (x) =
∑4

i=1αiφµi,σi
, with φµ,σ a N

(

µ,σ2
)

density, α =
(0.70,0.22,0.06,0.02), µ = (207,237,277,427) and σ = (25,20,35,50). Moreover, two differ-

ent scenarios were considered based mainly on Assumption 3.4 of the paper.

S1. n
5
9 l̄ → 0

S2. n
5
9 l̄ → ∞

The set of intervals were also chosen following the same steps as in the main paper, trying to

mimic the asymptotic conditions on l̄ in Assumption 3.4.

Figures 8 and 9 show the results of the ratios
h∗MISE

hMISEg
as box-plots, for scenarios S1 and S2,

respectively. In both figures, left box-plots show the results when, as pilot bandwidth, the plug-in

bandwidth, ĥPBg , is used, while the right box-plots present the results when, as pilot bandwidth,

the selector ζλemp is employed.

In all these experiments, a better performance of the bootstrap selector is observed when

using the pilot bandwidth obtained with the method inspired by smoothing splines.



0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

0
.9

1
.0

1
.1

1
.2

0
.9

0
0

.9
5

1
.0

0
1

.0
5

Figure 8: Box-plots for
h∗MISE

hMISEg
in scenario S1. Left box-plots correspond to the bootstrap bandwidths when,

as pilot bandwidth, we use the plug-in bandwidth, ĥPBg
. Right box-plots present the case of using ζλemp as

the pilot bandwidth. Left panel shows the results for n = 60, central panel for n = 240, and right panel for
n = 960.
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Figure 9: Box-plots for
h∗MISE

hMISEg
in scenario S2. Left box-plots correspond to the bootstrap bandwidths when,

as pilot bandwidth, we use the plug-in bandwidth, ĥPBg
. Right box-plots present the case of using ζλemp as

the pilot bandwidth. Left panel shows the results for n = 60, central panel for n = 240, and right panel for
n = 960.


