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Median bilinear models in the presence o
extreme values 

f 

Miguel Santolino∗ 

Abstract 

Bilinear regression models involving a nonlinear interaction term are applied in many 
felds (e.g., Goodman’s RC model, Lee-Carter mortality model or CAPM fnancial model). 
In many of these contexts data often exhibit extreme values. We propose the use of bi-
linear models to estimate the median of the conditional distribution in the presence of 
extreme values. The aim of this paper is to provide alternative methods to estimate me-
dian bilinear models. A calibration strategy based on an iterative estimation process of a 
sequence of median linear regression is developed. Mean and median bilinear models 
are compared in two applications with extreme observations. The frst application deals 
with simulated data. The second application refers to Spanish mortality data involving 
years with atypical high mortality (Spanish fu, civil war and HIV/AIDS). The performance 
of the median bilinear model was superior to that of the mean bilinear model. Median 
bilinear models may be a good alternative to mean bilinear models in the presence of 
extreme values when the centre of the conditional distribution is of interest. 
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1. Introduction 

In regression analysis the effect of the interaction between two explanatory variables on 
the dependent variable is often of great interest. Two-way analysis of variance (ANOVA) 
models have been widely applied in linear regression analysis when a measurement de-
pendent variable is regressed on two categorical independent variables, and the aim 
is to assess the main effect of the two nominal variables but also the interaction ef-
fect between them (Yates and Cochran, 1938). Two-way ANOVA models are linear 

∗ Riskcenter-IREA, Dept. Econometrics, University of Barcelona, Spain. E-mail: msantolino@ub.edu 
Received: February 2021 
Accepted: November 2021 

mailto:msantolino@ub.edu


164 Median bilinear models in the presence of extreme values 

regression models where the joint interaction effect is included as an additional regressor. 
So, linear regression techniques may be directly applied to estimate parameters, such as 
least squares or maximum likelihood methods. 

A more fexible modelling in two-way tables are the regression models in which 
the multiplicative interaction structure is specifed as a nonlinear term. These models 
are usually named bilinear models (Gabriel, 1978), although other names are often in 
use for these models, such as biadditive models (Denis and Pázman, 1999) or additive 
main effects and multiplicative interaction (AMMI) models (Van Eeuwijk, 1992, 1995). 
The unknown parameters of bilinear models may be also estimated by least squares or 
maximum likelihood. Least squares estimators of the nonlinear term are derived using 
singular value decomposition of the matrix of residuals (Gabriel, 1978; Lee and Carter, 
1992). Maximum likelihood estimators may be obtained by an iterative process (Good-
man, 1979, 1981). 

Bilinear regression models involving multiplicatively structured interactions are 
widely applied. Many models used in social sciences fts to this setting, including the 
row-column association model for two-way tables (Goodman, 1979, 1981), the uni-
form difference (UNIDIFF) or layer effect model for three-way tables (Erikson and 
Goldthorpe, 1992; Xie, 1992), generalized additive main effects and multiplicative in-
teraction effects (GAMMI) models for crop yields (Van Eeuwijk, 1992, 1995), the one-
dimensional Rasch-type model for binary responses (Turner, Firth and Kosmidis, 2013) 
or the stereotype regression model for ordered multinomial data (Anderson, 1984). In 
time series analysis, statistical factor models can be understood as multiplicative interac-
tion models (Croux et al., 2003). Factor models are widely applied in fnance for calcu-
lating the investment risk in asset pricing theory, such as the capital asset pricing model 
(CAPM) model or the Fama-French model (Black, Jensen and Scholes, 1972). In de-
mography and actuarial science, factor models are used to predict the future mortality. In 
fact, most of mortality projections models, such as Lee-Carter and Renshaw-Haberman 
models can be understood as multiplicative interaction models (Lee and Carter, 1992; 
Renshaw and Haberman, 2006; Macias and Santolino, 2018; Moyano-Silva et al., 2020). 

In many of these contexts data often show extreme values. When the centre of the 
conditional distribution is of interest, a common practice is to consider extreme values 
as outliers and remove them from the dataset prior to estimation. Formally, an outlier is 
a data point that deviates so far from the other observations because it was generated by 
a totally different mechanism or simply by error (Hawkins, 1980; Justel, Pena˜ and Tay, 
2001). Deleting outliers is important because those values can increase error variance 
and infuence estimates. However, this strategy should be taken very cautiously when 
data points are extreme values but not outliers. Extreme values are events that might 
happen, so we should be very cautious before deleting these values from datasets. 

A different approach is here followed. It is well known that the median is a robust 
measure of central tendency. Median bilinear models may be a good alternative to mean 
bilinear models in the presence of extreme values (Gabriel and Odoroff, 1984). In this 
article we propose the use of the bilinear regression setting to model the median of the 
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conditional distribution as a nonlinear function of predictors. The aim of this article is 
twofold: 1) to show how the parameters of the median bilinear model can be estimated 
and, 2) to compare the performance of the conditional median bilinear regression and 
the conditional mean bilinear regression in the presence of extreme values. 

The main contribution of the paper is to review alternative methods to estimate me-
dian bilinear models. Bilinear models are nonlinear regressions. The techniques avail-
able for estimating nonlinear regression models for the conditional median are not as 
well developed as those for the conditional mean estimation. Koenker and Park (1996) 
proposed to calibrate median nonlinear regression models by means of the linearization 
of the objetive function. Here we propose an alternative calibration approach based on an 
iterative estimation process of a sequence of median linear regressions. This second al-
ternative is novel. It was frst used by Moyano-Silva, P´ ın and Santolino (2020)erez-Mar´ 
to estimate the Lee-Carter stochastic mortality model. We here generalize this strategy 
to estimate median bilinear models with two main factors. To solve the underlying linear 
optimization problems, we use interior point methods (Koenker and Park, 1996; Portnoy 
and Koenker, 1997) and the maximum likelihood approach (Sánchez, Labros and Labra, 
2013). This paper focuses on the evaluation of goodness-of-ft of mean and median bi-
linear models in presence of extreme values. However, bootstrapping techniques can be 
used to estimate standard errors when inference on coeffcient estimates is of interest 
(Buchinsky, 1995). 

Two applications are illustrated for the comparison of the median and mean bilinear 
models. The frst application is based on simulated data. In the second application real 
Spanish mortality data are used to estimate the median and mean (log)bilinear stochastic 
mortality models. In both applications, bilinear models are calibrated using the whole 
sample. The performance of the ftted models is then evaluated computing a series of 
goodness-of-ft measures for the whole sample and when extreme values are removed. 

The article is structured as follows. Section 2 introduces the mean and median bilin-
ear regression models. Section 3 shows the parameter estimation methods of the mean 
bilinear regression model. Section 4 describes the calibration strategies of the median 
bilinear regression model. The two applications are illustrated in Section 5. Main con-
clusions are summarized in Section 6. 

2. Bilinear regression model 

Let Y be a continuous random variable with fnite expectation and cumulative distribu-
tion function FY defned by FY (y) = P(Y ≤ y). The inverse function of FY is known 
as quantile function, Q. The quantile of order α is defned as Qα (Y ) = F−1(α) = Y 
inf{y | FY (y) ≥ α} where α ∈ (0,1). The quantile is a left-continuous increasing func-
tion. If FY is continuous and strictly increasing, the mathematical expectation can beR 1represented as E(Y ) = 0 Q1−u(Y )du. The median is the quantile of order 0.5. 

Let consider two categorical variables. The frst factor has I levels (i ∈ {1, . . . , I}) 
and the second has J levels ( j ∈ {1, . . . ,J}). The sample size is N such as N = I · J. 
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Let yi j be the random variable conditional on the levels i and j. The bilinear regression 
model in two-way tables is defned as: 

yi j = ai + b j + ci · d j + εi j (1) 

where ai is the main effect of the level i and b j is the main effect of the level j. The 
coeffcients of the nonlinear term are ci and d j capturing the interaction effect of the two 
levels. Finally, εi j is the error random variable. Note that infnite solutions exist in (1). 

˜For any scalars z, u and v, the following transformations {ãi,b j, c̃i, d̃ j} = {ai − z · ci,b j − 
ci + v

d j · v − z · v, ,u · (d j + z)} give unaltered outcome values. To overcome the lack of 
u 

identifability and to help in the interpretation, the following two constraints are often 
set: ∑i ci = 1 and ∑ j d j = 0. 

In the case of independent and identically zero-mean distributed random errors, the 
conditional expected value of yi j may be expressed as 

E(yi j) = ai + b j + ci · d j (2) 

Analogously, in case of independent and identically zero-median distributed random 
errors, the median of yi j may be expressed as (Bassett and Koenker, 1978), 

Q0.5 (yi j) = ai + b j + ci · d j (3) 

Sections 3 and 4 are devoted to estimate the vectors of coeffcients, a = (a1, . . . ,aI), 
b = (b1, . . . ,bJ), c = (c1, . . . ,cI) and d = (d1, . . . ,dJ) in (2) and (3), respectively. 

3. Mean bilinear model: calibration 

Two widely used techniques to estimate the parameters of (2) are the least squares and 
the maximum likelihood methods. 

Least squared errors 

The expectation is the value that minimizes the sum of squared deviations. One strategy 
for estimating the parameters is to minimize the sum of squared errors, as follows: 

min ∑(yi j − ai − b j − ci · d j)
2 (4)

θ ∈R2·(I+J) i, j 

where θ is the set of parameters to estimate, θ = (a,b,c,d). Coeffcients in (4) cannot be 
directly estimated by ordinary least squares because the right-hand side of equation (2) 
is not linear with the parameters. To estimate the coeffcients, Gabriel (1978) proposed 
to ft the bilinear models in a two-stage process: (1) ft the linear part of the model, then 
take residuals, and (2) ft the bilinear part to the residuals. 

Stage 1 uses linear least squares to solve the least squares problem. The resulting 
vectors â = (â1, . . . , âI) and b̂ = (b̂1, . . . , b̂J) are then introduced into the joint ftting 
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problem. The (I × J)-matrix A, where the (i, j)-element is ai j = yi j − âi − b̂ j, is de-
composed by singular value decomposition, svd(A) = UΛVT . The vector of estimates 
ĉ = (ĉ1, . . . , ĉI) is the frst column of U , ĉ = (u1,1, . . . ,uI,1), and the vector of esti-
mates d̂  = (d̂1, . . . , d̂J) is the frst column of V multiplied by the frst eigenvalue λ1,1, 
d̂ = λ1,1 · (v1,1, . . . ,vJ,1). 

Maximum likelihood 

Goodman (1979) proposed to use a iterative method for estimating bilinear models by 
maximum likelihood. Suppose the log-likelihood function is given by l(θ )= ∑i, j log( f (yi j)), 
where f is the density function of yi j. The function l may be maximized by an iterative 
process in which the elementary newton method is applied for the score functions of 
each set of parameters. In the mean bilinear model we have three sets of parameters. 
Denote the vector of initial values θ̂ 0 = (â0 , b̂0 , ĉ0 , d̂0) and l0 = l(θ̂ 0). In the iteration 
step v, parameters are updated as follows: 

∂ lv/∂ a ∂ lv/∂ b1. Given θ̂ v , âv+1 = âv − 
∂ 2lv/∂ a2 , b̂v+1 = b̂v − 

∂ 2lv/∂ b2 , ĉv+1 = ĉv and d̂v+1 = d̂v . 

∂ lv+1/∂ c2. Given θ̂ v+1, ĉv+2 = ĉv+1 − 
∂ 2lv+1/∂ c2 and âv+2 = âv+1, b̂v+2 = b̂v+1 and d̂v+2 = 

d̂v+1 . 

∂ lv+2/∂ d3. Given θ̂ v+2, d̂v+3 = d̂v+2 − 
∂ 2lv+2/∂ d2 , âv+3 = âv+2, b̂v+3 = b̂v+2 and ĉv+3 = ĉv+2. 

4. If lv+3 − lv ≤ η then stop, where η is the tolerance value, otherwise, θ̂ v = θ̂ v+3 

and move to step 1. 

An application of this method to model the Poisson distributed number of deaths is 
shown by Brouhns, Denuit and Vermunt (2002). 

4. Median bilinear model: Least absolute errors 

The mean minimizes the sum of squared deviations and the median is the value that 
minimizes the sum of absolute deviations. The parameters of the median regression are 
estimated minimizing absolute errors, as follows: 

min ∑ yi j − ai − b j − ci · d j (5)
θ ∈R2·(I+J) i, j 

The expression (5) can be rewritten as the following minimization problem: � � 
min 0.5 ∑ui j + ∑vi j (6)

θ∈R2·(I+J),u≥0,v≥0 i, j i, j 

subject to 
yi j − ai − b j − ci · d j − ui j + vi j = 0. 
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where ui j = εi j if εi j > 0 or 0 otherwise, and vi j = |εi j| if εi j < 0 or 0 otherwise, and εi j = 
yi j −ai −b j −ci ·d j. Let us use the following notation εi j(θ ) = yi j − fi j(θ ), with fi j(θ ) = 
ai + b j + ci · d j, to indicate that εi j depends on the set of parameters θ . Two alternative 
strategies are adopted to estimate the parameters in (6) based on the conversion of the 
original nonlinear optimization problem in a sequence of linear problems. 

4.1. Strategy A: Linearization of the objective function 

Strategy A transforms the nonlinear problem (6) in a sequence of linear problems. Pro-
vided that the functions εi j(θ ) are continuously derivable in θ , the Lagrangian function 
may be expressed as L(s, t,w) = uT (0.51N − s − t)+ vT (0.51N + s− w)+ ε(θ)Ts, where 
1T 

N is a N-column vector of 1’s, ε(θ ) = (ε1,1(θ ), ...,εi j(θ ))T and s, t and w are the multi-
pliers of Lagrange with t and w are non-negative vectors. Taking partial derivatives with 
respect to the model parameters θ and the decision variables u and v, we obtain the dual 
feasibility conditions. The dual version of (6) can be then expressed as, 

max ε(θ)T s s.t J(θ)T s = 0, (7) 
s∈[−0.5,0.5]N 

where J(θ ) is the vector of frst derivatives of fi j(θ) with respect to θ (El-Attar, Vidya-
sagar and Dutta, 1979). 

4.1.1. Calibration: Affne scale method 

Let us consider the locally linearized approximation ε(θ +∆) ≈ ε(θ )−J(θ ) ·∆. Koenker 
and Park (1996) propose to replace ε(θ) by the linear approximation ε(θ +∆) and, then, 
to apply iteratively the affne scaling method to solve the dual optimization problem (7). 

0 b̂0 0Consider the set of initial values θ̂ 0 = (â , , ĉ , d̂0). In the iteration step v, parameters 
are updated as follows: 

1. Refne s with Meketon algorithm and estimate ∆ which depends on s and J(θ̂ v), 
and ε(θ̂ v). 

2. To ensure that the linearized approximation generates feasible steps, update θ̂ 
as θ̂ v+1 = θ̂ v + λ ∆̂, where ∆̂ is the direction step and λ the length of the step. 
The length of the step λ ∈ [0,1] is estimated minimizing the primal optimization 
problem (6) for ε(θ̂ v + λ ∆̂ ). � � 

3. If ∑i, j |εi j(θ̂
v+1)|− |εi j(θ̂

v)| ≤ η then stop, where η is the tolerance value. Oth-
erwise, move to step 4. 

4. Project the refned s in the null space of the updated J(θ̂ v+1) and rescale to ensure 
that it is bounded in [−0.5,0.5], and move to the next iteration. 
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4.2. Strategy B: Sequence of median linear regressions 

Under the strategy B, coeffcients in (6) are also estimated by means of an iterative pro-
cess of a sequence of linear optimization problems. Strategy B draws inspiration from 
Wilmoth (1993) who replied the method described by Goodman (1979) to the case of 
minimum least square estimators. Wilmoth (1993) proposed an iterative process to esti-
mate the parameters of the mean bilinear model sequentially by least square techniques. 
Santolino (2020) adopted this strategy to estimate the parameters of the Lee-Carter quan-
tile mortality model by least absolute techniques. We here describe this strategy for the 
median bilinear regression. Like the median polish for additive models (Emerson and 
Hoaglin, 1983), our method relies on the properties of homogeneity and translation in-
variance satisfed by the median, i.e., for any constant k ∈ R, the following two equalities 
are satisfed, Q0.5 (k · yi j) = k · Q0.5 (yi j) and Q0.5 (yi j + k) = Q0.5 (yi j)+ k. 

0 0Let consider the set of initial values θ̂ 0 = (â , b̂0 , ĉ , d̂0). In the iteration v, parame-
ters are updated as follows: � � 

1. Given θ̂ v , estimate the parameters γai and γb j ftting Q0.5 yi j 
v = γai · âi

v + γb j · b̂v
j, 

v+1where yv
i j = yi j − ĉv

i · d̂v
j . Update âi = γ̂ai · âv

i and b̂v
j 
+1 = γ̂b j · b̂v

j, ĉ
v+1 = ĉv and 

d̂v+1 d̂v= . � � 
v+1 v+1 v+12. Given θ̂ v+1, estimate the parameter γci ftting Q0.5 yi j = γci · ĉ , where y = i i j 

v+1−b̂v+1yi j−âi j v+2 v+1 av+2 av+1 b̂v+2 ˆ d̂v+1 
d̂v+1 . Update ĉi = γ̂ci · ĉi , ˆ = ˆ , = bv+1 and d̂v+2 = . 

j � � 
v+2 d̂v+23. Given θ̂ v+2, estimate the parameter γd j ftting Q0.5 yi j = γd j · j , where 

v+2 bv+2yi j−â −ˆ v+2 i j d̂v+3 d̂v+2 av+3 av+2 b̂v+3 ˆyi j = v+2 . Update j = γ̂d j · j , ˆ = ˆ , = bv+2 and 
ĉi 

cv+3 cv+2ˆ = ˆ . � � 
4. If ∑i, j |εi j(θ̂

v+3|− |εi j(θ̂
v| ≤ η then stop, where η is the tolerance value. Oth-

erwise, θ̂ v = θ̂ v+3 and move to step 1. 

4.2.1. Calibration of a median linear regression 

With the application of this strategy, the problem of estimating a median bilinear regres-
sion is converted into a problem of estimating iteratively a sequence of three median 
linear regressions. A median linear regression in matrix notation may be expressed as 
Q0.5 (Y ) = XT

γ , where Y is the response vector, γ is the set of parameters to estimate 
and X is the design matrix. At each step, the following optimization problem has to be 
resolved: 

min 0.51T 
Nu+ 0.51T 

Nv s.t XT
γ + u− v = Y. (8)

γ,u≥0,v≥0 

Different methods may be applied to estimate the parameters. We briefy describe 
two estimation methods which are the Mehrotra’s Predictor-Corrector method (Port-
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noy and Koenker, 1997) and the likelihood-based approach (Machado and Silva, 2011; 
Sánchez et al., 2013). 

Mehrotra’s Predictor-Corrector method 

Alternative algorithms for linear programs with bounded variables may be used to solve 
(8). A widely used algorithm is the Mehrotra’s Predictor-Corrector (MPC) method de-
scribed in Mehrotra (1992). As the affne scale algorithm, the MPC algorithm belongs 
to the class of point interior methods. The MPC method is an appropriate algorithm 
to solve the canonical linear program: min{cTx : Ax = b, x ≥ 0} , where A ∈ RmxN , y, 
b ∈ Rm and c, x, s ∈ RN , and its dual problem, max{bTy : ATy + s = c, s ≥ 0}. The 
MPC method fnds the joint solution of the primal and dual equations (Salahi, Peng and 
Terlaky, 2008). � 

The dual optimization problem of (8) is max yTs : XTs = 0, s ∈ [−0.5,0.5]N , 
where s are the multipliers of Lagrange. Setting a = s + 0.5, the maximization prob-� 

Tlem is converted to max y a : XTa = (0.5)XT1N , a ∈ [0,1]N . Changing the sign of y, 
it becomes a minimization problem which fts in the setting of the canonical linear pro-
gram in which the use of MPC method is appropriate. 

Maximum likelihood 

The likelihood-based approach is based on the asymmetric Laplace distribution to repli-
cate the optimization problem (8). Suppose that the response variable yl follows an 
asymmetric Laplace distribution with location parameter xT 

lγ , scale parameter σ and 
skewness parameter α , where xl is the l row of the design matrix, with l = 1, . . . ,N. The 
likelihood function is 

αN(1− α)N 
( � 

yl − xlγ 
�)

N T 

L(γ,σ) = exp − ∑ ρα ,
σ N

l=1 σ 

where the loss function is defned as ρα (rl) = rl(α − Irl ) for α ∈ (0,1), Irl is an indicator 
function such that Irl = 1 if rl < 0 and zero otherwise. Note that for α = 0.5, if σ 
is considered a nuisance parameter, the maximization of the L(γ,σ) is equivalent to 
minimize the objective function (8). Sánchez et al. (2013) describe the steps to obtain 
the ML estimates based on the expectation-maximization (EM) algorithm. 

5. Results 

In this section it is compared the performance of mean bilinear models and median 
bilinear models in presence of extreme values in two different contexts. We illustrate the 
use of these models with a simulated database and in a real application to the Spanish 
mortality data. The parameters of the mean bilinear regression model were estimated 
by least squares (Mean SVD) and also by maximum likelihood (Mean MV). Median 
bilinear regression models were estimated by the method A and the method B. In the case 
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of the method A, the parameters were estimated by the affne scaling method (Med A-
AS). In the case of the method B, we apply the interior point method with the Mehrotra’s 
Predictor-Corrector algorithm (Med B-MP) and the maximum likelihood approach based 
on the asymmetric Laplace distribution (Med B-MV) to calibrate the model. 

All results were calculated in R (R Core Team, 2020). The estimates of the mean 
bilinear model by maximum likelihood were obtained by means of the gnm package 
(Turner and Firth, 2018) that applies the iterative process in which the linear terms are 
updated by reweighted least squares (Turner and Firth, 2018; Dutang, 2017). The nls 
function in the stats package may be also used to ft a mean bilinear model by a iterative 
process to minimize least square errors. Median regression models may be estimated by 
interior point methods with R package quantreg (Koenker, 2019), but some implemented 
functions can only deal with full-rank design matrices. We use the function rq.ft.fnb of 
the package quantreg and a version of the function nlrq available in Koenker (2020) 
to calibrate median regression models based on the MPC method and on the Meketon 
algorithm. Finally, the R package ALDqr can be used to estimate median linear models 
by maximum likelihood (Sánchez et al., 2013). We modify the function EM.qr of this 
package to deal with sparse matrices. The data and code used in the data analysis are 
publicly available on GitHub (FMBM, 2021) 

5.1. Simulation 

For illustrative purposes a simulated dataset with extreme values is used for the estima-
tion of median bilinear models. We simulate a database generated by the model (1) in 
case that the error is normally distributed and there are shocks involving extreme out-
comes. Let consider the response variable yi j is generated by yi j = ai + b j + ci · d j + εi j, 
where εi j ∼ N(0,0.05). The frst factor a has 50 levels, (i ∈ {1, . . . ,50}), and the second 
b has 40 levels, ( j ∈ {1, . . . ,40}). The description of coeffcients used in the simulation 
are shown in Table (1). 

Table 1. Descriptive statistics of simulated data. 

Min. 1st quartile Median Mean 3rd quartile Max. 
ai 1.34 2.95 3.78 3.72 4.85 5.97 
b j 0.00 0.16 0.27 0.31 0.36 0.72 
ci -2.36 -1.02 -0.42 -0.02 0.2 5.48 
d j -0.03 -0.02 0.00 0.00 0.01 0.08 
yi j 1.32 2.88 4.10 4.04 5.18 7.08 

Now we incorporate the extreme outcomes (shocks) to the simulated data. Suppose 
that the response variable yi j is affected by shocks as follows, ys = yi j + B ·U , wherei j 
B is a bernoulli variable that takes 1 with probability p and U is a discrete random 
variable that takes values {−8,−6,6,8} with probability 0.25 each one. We consider fve 
different scenarios in relation to the frequency of shocks, p = (0,0.01,0.025,0.05,0.1), 
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that is, scenario without shocks (p = 0), scenario in which the 1% of observations are 
extreme values (p = 0.01), scenario with 2.5% of extreme values (p = 0.025), scenario 
with 5% of extreme values (p = 0.05) and scenario with 10% of extreme values (p = 
0.1). 

The mean bilinear and the median bilinear models are ftted to the simulated data 
in the fve scenarios. The sum of squared errors (SSE) and the sum of absolute errors 
(SAE) are computed for each ftted bilinear model in the scenarios with extreme obser-
vations. In order to evaluate the infuence of extreme values on estimates, the bilinear 
models calibrated in the scenarios with extreme observations are also used to compute 
the statistics of ft for the simulated data without shocks. Results are shown in Table 2. 

Table 2. Statistics of ft of the mean and the median bilinear models. 

Without 
shocks 

1% shocks 
ys 

i j yi j 

2.5% shocks 
ys 

i j yi j 

5% shocks 
ys 

i j yi j 

10% shocks 
ys 

i j yi j 

Mean SVD SAE 75.83 338.38 277.75 925.01 670.65 1620.63 1082.47 2803.60 1825.38 
SSE 4.54 730.60 245.61 2686.90 652.01 5620.11 1313.34 10734.41 2905.55 

Mean MV SAE 75.83 338.38 277.75 925.01 670.65 1616.85 1081.19 2803.27 1825.07 
SSE 4.54 730.60 245.61 2686.90 652.01 5600.56 1313.74 10734.41 2905.64 

Med A-AS SAE 75.80 306.88 238.60 922.89 667.86 1504.16 887.85 2707.61 1543.91 
SSE 4.55 852.07 318.87 2687.99 647.77 6102.31 1167.75 12326.93 2613.01 

Med B-MP SAE 74.21 193.53 74.38 487.85 74.79 932.92 75.55 1767.64 77.59 
SSE 4.74 961.50 4.77 3320.13 4.77 6893.69 4.89 13581.87 5.20 

Med B-MV SAE 75.53 195.57 76.91 493.22 82.09 939.44 84.18 1712.79 193.47 
SSE 4.73 956.70 5.01 3300.06 5.64 6872.17 6.01 12848.81 646.84 

If we focus on the performance of ftted models in the scenario without shocks (sec-
ond column of Table 2), as expected, the lowest SSE is observed for the mean bilinear 
models, and the lowest SAE for the median bilinear models. In fact, this behaviour is 
repeated in the scenarios with extreme observations when the statistics of ft were com-
puted for the simulated data with the shocks (ys 

i j). 
However, this conclusion varies when the estimated bilinear models ftted in the sce-

narios with extreme values are analysed in the scenarios without shocks (yi j). A lower 
SSE associated to mean bilinear models is not longer observed when the shocks are re-
moved from the simulated data and the statistics of ft are computed again. Now, the 
ftted median bilinear models show a lower SAE in all scenarios and also a lower SSE 
in almost all scenarios in comparison with the ftted mean bilinear models. In partic-
ular, the performance of the two median bilinear models ftted by method B is clearly 
better than the performance of the ftted mean bilinear models, and it is also higher than 
that of the median bilinear model estimated by method A. Comparing between the two 
median bilinear models ftted by method B, the MPC method seems to provide more 
stable estimates when the number of extreme values increases. Finally, almost identical 
outcomes were obtained with the two methods of coeffcient estimation for the mean 
bilinear model. 
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5.2. Application to mortality data 

The second example uses Spanish mortality data to illustrate the application of bilin-
ear models in presence of extreme values. One of the most infuential approaches to 
the stochastic modelling of mortality rates is the parametric nonlinear regression model 
introduced by Lee and Carter (1992). The Lee-Carter model proposes estimating the 
conditional mean mortality rate as the nonlinear combination of age and calendar year 
parameters. Santolino (2020) adopts the Lee-Carter framework to estimate the condi-
tional quantile mortality rate. 

The Lee-Carter modelling fts in the setting of the bilinear models defned in (1) 
in which the main effect of level j (calendar year) is equal to zero, i.e. the response 
variable (log of the mortality rate) is regressed by the main effect of level i (age) and 
the interaction between levels i and j. We here estimate the Lee-Carter mean mortality 
model and the Lee-Carter median mortality model for the Spanish male population. The 
number of deaths observed, exposures and central mortality rates for the Spanish pop-
ulation by gender were obtained directly from the Human Mortality Database (HMD, 
2020). Mortality information is available for ages between 0 and 110, but the number of 
observations is ineluctably small at the extreme ages and patterns at very advance ages 
are diffcult to observe (Robine et al., 2007). We select ages between 0 and 100 years, 

The mortality data cover the observation period between the years 1908 and 2016. 
Social progress has led to a notable reduction in mortality of the Spanish population 

which is a common practice in demographics. 
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Figure 1. Mortality rates of Spanish male population at different ages over 1908–2016 period. 
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through this period. However, there are three spans of time in which the decreasing 
trend is disrupted, namely, the Spanish fu, the Spanish Civil War and HIV/AIDS. The 
Spanish fu was a severe infuenza pandemic with deadly consequences in 1918 and the 
following four years (Carreras and Tafunell, 2005). The Spanish Civil War took place 
between 1936 and 1939. The postwar era formally ended in 1953 with the signing of 
the US economic agreement (Pact of Madrid). During the war and the frst half of the 
postwar period, poverty and malnutrition affected remarkably the mortality (Jiménez 
Lucena, 1994). Finally, mortality associated with HIV dramatically increased during the 
late 80s and 90s, particularly in middle-aged population (CNE, 2011). Figure 1 shows 
Spanish male mortality rates at different ages in the period 1908–2016, in which these 
three peaks in the mortality rate are sharply appreciated. 
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Figure 2. Mortality rates at different years of Spanish male population. 

The impact of years involving atypically high mortality rate values may be observed 
in Figure 2. Mortality rates (in log scale) at ages between 0 and 100 are showed for all 
years in Figure 2 (left). Each line corresponds to the log mortality rates at 0-100 ages 
in a particular calendar year, and calendar years are differentiated by colors. In case 
of a continuous reduction in mortality rates over time through the 1908-2016 period, 
the colored lines should not overlap themselves and they do it. In Figure 2 (right) the 
years belonging to the time intervals 1918–1922, 1936–1946 and 1985–1995 are not 
represented. Note that, when these atypical years are removed, the lines seldom overlap 
themselves. 
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The mean and median bilinear models are ftted to the Spanish mortality data. The 
models are calibrated with data involving all calendar years. The measures of goodness-
of-ft are computed for the whole sample and when years belonging to the time intervals 
1918–1922, 1936–1946 and 1985–1995 are excluded. The sum of squared errors and 
absolute errors are shown for each ftted bilinear model in Table 3. 

Table 3. Statistics of ft of bilinear models ftted to Spanish male mortality data. 

SAE SSE 
Without a
SAE 

typical years 
SSE 

Mean SVD 
Mean MV 
Med A-AS 
Med B-MP 
Med B-MV 

1279.07 
1279.07 
1226.87 
1227.25 
1235.09 

272.76 
272.76 
300.96 
301.49 
288.29 

908.44 
908.44 
843.84 
842.90 
857.19 

172.35 
172.35 
171.63 
170.79 
169.49 
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Figure 3. Coeffcient estimates of the Mean MV and Med A-AS models. 

When the goodness-of-ft statistics are computed for the whole sample, the ftted 
mean bilinear models have lower SSE values and higher SAE values compared to the 
ftted median bilinear models. Whether or not atypical years are considered in the com-
putation of the statistics of ft, the ftted median bilinear models show lower SSE and 
SAE values than the ftted mean bilinear models. The performance of the median bilin-
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ear models calibrated by the affne scaling method and the MPC method is very similar. 
Among the ftted median bilinear models, the median bilinear model calibrated by max-
imum likelihood shows the highest SAE value and the lowest SSE value. Comparing the 
calibration methods of the mean bilinear model, the same results are obtained with the 
two methods of coeffcient estimation. 

A comparison of coeffcient estimates of Mean MV and Med A-AS models is pro-
vided in Figure 3. Small differences in coeffcient estimates are observed for ages in the 
20–40 interval and years in time intervals 1936–1946 and 1985–1995. 

In mortality applications it is also important to evaluate the prediction power of mod-
els. Backtesting is applied to evaluate the prediction accuracy of mean and median 
models for annual periods up to fve years. Alternatively, resampling methods could be 
used to analyse the prediction power of stochastic mortality models (Atance, Debón and 
Navarro, 2020). The sum of absolute prediction errors (SAPE) and the sum of squared 
prediction errors (SSPE) are shown for each bilinear model in Table 4. Median bilinear 
models show lower SAPE values in all cases and also lower SSPE values in the four-year 
and fve-year forecasting periods (2013–2016 and 2012–2016, respectively). 

Table 4. Backtesting to evaluate prediction power of bilinear models for different periods of 
forecasting. 

SSPE 
2015–

SAPE 
2016 
SSPE 

2014–
SAPE 

2016 
SSPE 

2013–
SAPE 

2016 
SSPE 

2012–
SAPE 

2016 
SSPE 

Mean SVD 
Mean MV 
Med A-AS 
Med B-MP 
Med B-MV 

15.14 
15.14 
14.52 
14.44 
14.29 

3.82 
3.82 
4.52 
4.51 
4.20 

28.02 
28.02 
27.47 
27.51 
26.99 

6.90 
6.90 
8.89 
8.69 
8.11 

45.60 
45.60 
42.98 
42.89 
42.75 

11.76 
11.76 
13.35 
13.27 
12.75 

67.07 
67.07 
59.46 
59.74 
60.96 

17.31 
17.31 
17.22 
17.30 
17.16 

82.39 
82.39 
73.31 
73.07 
75.00 

21.04 
21.04 
20.83 
20.88 
21.16 

6. Conclusions 

Conditional mean bilinear regression models have been broadly used in many research 
felds. In many of the contexts that mean bilinear models are applied, data have extreme 
observations. It is know that in presence of extreme values the mean may be an inaccu-
rate statistic to refect the centre of the conditional distribution. In this article we have 
compared the performance of the mean bilinear model and the median bilinear model in 
different contexts involving extreme observations. 

In the bilinear modelling the multiplicatively interaction structure is specifed as a 
nonlinear term. Alternative methods of parameter estimation for nonlinear regressions 
are applied. The mean bilinear model is estimated by lest squares and maximum like-
lihood. The method of parameter estimation for nonlinear median regression involving 
the linearization of the objective function is compared with the calibration strategy of 
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the median bilinear model in which coeffcients are estimated by an iterative process of 
a sequence of median linear regressions. This second calibration strategy was frst used 
by Santolino (2020) and here it is generalized to the median bilinear model setting. 

Mean and median bilinear models are compared in two applications involving ex-
treme values. The frst application deals with simulated data with extreme values. The 
second application is illustrated by means of mortality data of the Spanish population 
over the 1908–2016 period. During this period, there were a set of years with a partic-
ular high mortality (Spanish fu, civil war and HIV/AIDS). Statistics of goodness-of-ft 
were compared. The ftted median bilinear models showed the lowest sum of absolute 
errors and the ftted mean bilinear models the lowest sum of square errors. However, 
when observations with extreme values were removed, the ftted median bilinear models 
showed the lowest values in the two statistics of goodness-of-ft. This result would con-
frm that the estimated median is a more appropriate statistic to refect the centre of the 
conditional distribution than the estimated mean in these two applications. In the context 
of COVID-19 using median rather mean approaches when estimating mortality models 
may be relevant due to the unusual data points arising in 2020 and 2021. 

Analysing the two calibration strategies of the median bilinear regression model, we 
found that the strategy involving the sequence of median linear regressions performed 
clearly better than the strategy associated to the linearization of the objective function in 
the application with simulated data and similarly in the application with mortality data. 

We conclude that the application of the median bilinear model may be more appro-
priate than the mean bilinear model in presence of extreme values, whether the centre 
of the conditional distribution is of interest. Parameters of the median bilinear model 
may be easily estimated by means of calibrating sequentially median linear regressions. 
These concluding remarks are relevant in felds such as the stochastic mortality mod-
elling in which researchers have to deal often with data involving extreme observations 
(wars, pandemics, natural disasters, famines, etc.), and, in general, in any context of 
application of bilinear models in which the presence of extreme values is frequent. 
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