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1. Proof that the CMP model is not a renewal process

Let {Y;,k € N} denote a sequence of interarrival times between the (k — 1)th and kth
event, and let X () be a discrete random variable, representing the total number of events
that occur before or at exactly time ¢. The arrival time S, is the time of the nth event.
It can be computed by the sum of the interarrival times, S, = Y7, Yx. The probability
function of the count variable X (¢) is given by

1 —Fs, (1) for n=0

t (D
/0 fs,(sn) [1 —Fy,,, (t—sn)] ds, forn=1,2,..,

where f5, (¢) represents the probability density function of S,, and Fy, () represents the
cumulative distribution function of Y,,. The CMP probability distribution function is
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We prove that the CMP model is not a renewal process by showmg that Fy, (1) # Fy, (t).

(P01ss0n distribution).

Derivation of Fy, (1)

Putting n = 0 in Equation (2), we obtain

1 1
ZOv) and Fy](t)—FS,(t)—1—7Z<M’v>.

P()(l) =
Letting ¢, (1) = 1 — Fy, (t) = ¥ ¢; (At)", the following equation is obtained:
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This equation can be solved recursively in the usual manner:
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From these equations for ¢y, ci, c2, and c3, one can deduce that the general solution
might be of the form

1 for i=0
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If we let v = 1, then Fy, () = 1 — e~ (Poisson process).
Derivation of Fy, ()
Putting n = 1 in Equation (2), we obtain
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where ¢, (1) =1—F,(t) = Y7, ¢2(i) (0) % Using the Leibniz integral rule, the first few
derivatives of P;(¢) are as follows:
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Taking t = 0, we have

cod = fs,(0)92 (0
210127 = f5,(0)¢a
31c24% = 5 (0)a
(0)

Hesh = £5(0)92(0) + £5, (0061 (0) + £5,(0)93 (0) + f5,(0)93" (0)

The first few derivatives of Z (A1, v) = Y7 (A1) are as follows:
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The first few derivatives of fs, (1) = Fy, (t) = Z1V) are as follows:
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We substitute these expressions, co =1, ¢; = —1, ¢ = —ﬁ + 1, and c3 = —@ +
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1 into Equations (3)-(6) and determine the coefficients (7)2(") (0):
$2(0) =1
2

” 2 6 4
0= (7~ e+ ) ¥

y 8 12 24 4 24 8\ .
2 (0= <‘<zz>v ey @y et | )’“3

Therefore,
2 2 6 4\ (Ar)?
)= G+ (s )
8 12 24 4 24 8 \ (A1)
+ <(2!)v IEDX + anv - (2N (2nv@Eyy + (2!)3V) 31

If we let v = 1, then Fy, () = 1 — e~** (Poisson process). This completes the proof.
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