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Introduction 

Due to page restrictions, in this document we present some simple plots and graphs 
related to the data studied in its parent paper. Please refer to the parent paper for more 
details regarding the data and context for the results presented here. 

Is it necessary to use covariates? 

In Section 3.2, we apply the concept of Granger causality to determine whether data 
from other regions may be useful in predicting the incidence of infuenza in Brazil. The 
results of the regression models applied to the data show that using covariates produces 
reasonably accurate forecasts. But a question that remains to be answered is how a 
simple autoregressive model performs compared to the models explored in Section 5. 
To examine this question, in this section we ft a simple AR model to the infuenza 
incidence data in Brazil (see Section 4.1 for details). 

Using the Box and Jenkins approach to time series modeling, a simple stationary 
AR(2) model was capable to model the data. The relevant results are presented in Ta-
ble 1. A Ljung-box test applied to the squared residuals of the ftted AR(2) model points 
toward the absence of an ARCH effect (p-value 0.08). 

Table 1. Fitted AR(2) model for the infuenza incidence data in Brazil. 

intercept 
Estimate 
260.42 

Std. Error 
57.291 

z stat. 
4.546 

Pr(> |z|) 
< 10−5 

φ1 1.0180 0.0823 12.376 < 10−15 

φ2 -0.3909 0.0821 -4.759 < 10−5 

Log-likelihood: −848.2 AIC: 1704.41 
Ljung-Box test (df = 18): p-value = 0.9752 
Roots of the characteristic polynomial: 1.3023 ± 0.9287i 
Absolute value: |1.3023 ± 0.9287i| = 1.5995 

Although the model identifcation and estimation present no diffculty, it is well 
known that out-of-sample forecasted values for models presenting very short memory, 
such as the AR(2), converge very fast to a constant. This is the case of the ftted AR(2) 
model as it can be seen in Figure 1 where we present the observed values (black) along 
with 11-steps ahead forecasts (red). As expected, the ftted AR(2) model does a poor 
job at forecasting the out-of-sample dynamics of the data, converging very fast to a con-
stant. The mean square error for the 11-step ahead forecast is 50,372, more than 2.5 
times higher than the worst result presented in Section 5. The in-sample mean squared 
error is also high: 56,677. In conclusion, the introduction of covariates in the model 
signifcantly improves forecasting. 
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Figure 1. 11-steps ahead forecasts for the ftted AR(2) model (red) compared to the observed 
values (in black). 

List of countries in each geographic region for genetic diversity data 

Table 2. List of countries with sequence data in each geographic region for H3N2 genetic diver-
sity measures. Countries in bold have more than 100 sequences. 

Region Countries 

Asia 

Singapore, China, Hong Kong, Japan, Thailand, Malaysia, South Korea, 
Viet Nam, India, Iran, Saudi Arabia, Indonesia, Israel, Jordan, Philippines, 
Kuwait, Taiwan, Georgia, Afghanistan, Lebanon, Kyrgyzstan, Bangladesh, 
Cambodia, State of Palestine, Bahrain, Nepal, Sri Lanka, United Arab Emi-
rates, Iraq, Myanmar, Bhutan, Qatar, Turkey 

North America 
USA, Canada, Nicaragua, Mexico, Panama, El Salvador, Dominican Re-
public, Honduras 

Global 

USA, Australia, Canada, Switzerland, Singapore, Japan, China, Hong 
Kong, Nicaragua, New Zealand, Germany, Chile, Thailand, Denmark, 
South Korea, India, Russia, Peru, Malaysia, Netherlands, United King-
dom, Italy, Iran, Brazil, Cambodia, Czech Republic, Philippines, Viet Nam, 
Taiwan, Kenya, Mexico, France, Guam, Israel, Finland, Jordan, Sweden, 
Kuwait, Saudi Arabia, Uganda, Georgia, South Africa, Bahrain, Egypt, 
Spain, State of Palestine, Lebanon, Colombia, Norway, Tunisia, Bangladesh, 
Indonesia, Kyrgyzstan, Ethiopia, Panama, Uruguay, Belgium, Bolivia, Sri 
Lanka, Djibouti, Chad, United Arab Emirates, Austria, Bhutan, Iraq, Nepal, 
Senegal, Dominican Republic, Hungary, Serbia, Bosnia and Herzegovina, 
Afghanistan, El Salvador, Ghana, Honduras, Kosovo, Myanmar, Luxem-
bourg, New Caledonia, Qatar, Turkey 



Table 3. List of countries with sequence data in each geographic region for H1N1 genetic diver-
sity measures. Countries in bold have more than 100 sequences. 

Region Country 

Asia 

Singapore, China, Japan, India, Thailand, Taiwan, Malaysia, Iran, Hong 
Kong, Viet Nam, South Korea, Turkey, Jordan, Nepal, Saudi Arabia, Oman, 
Sri Lanka, Afghanistan, Kuwait, Israel, Bahrain, Mongolia, Indonesia, Kaza-
khstan, Myanmar, Turkmenistan, Lebanon, State of Palestine, Kyrgyzstan, 
Bangladesh, Cambodia, Philippines 

North America 
USA, Canada, Nicaragua, Mexico, Dominican Republic, Haiti, 
El Salvador, Puerto Rico, 

Global 

USA, United Kingdom, Singapore, China, Japan, Finland, Canada, 
Brazil, Taiwan, Russia, India, Nicaragua, Mexico, Iran, Hong Kong 
, Australia, Viet Nam, Malaysia, Greece, New Zealand, Chile, Ger-
many, South Korea, Denmark, Estonia, Turkey, Argentina, Czech Repub-
lic, Netherlands, Kenya, Cambodia, Norway, Saudi Arabia, France, Guam, 
Peru, Oman, Egypt, Uganda, Spain, Belgium, Kuwait, Poland, Jordan, Nepal, 
Puerto Rico, Italy, Dominican Republic, Mongolia, Paraguay, Afghanistan, 
Indonesia, Austria, Hungary, Philippines, Serbia, Tunisia, Sri Lanka, Ireland, 
Kazakhstan, New Caledonia, Colombia, Bahrain, Ghana, Myanmar, Swe-
den, Bolivia, Senegal, South Africa, State of Palestine, Ecuador, El Salvador, 
Kyrgyzstan, Nigeria, Switzerland, Djibouti, Ethiopia, Luxembourg, Solomon 
Islands, Venezuela, Bangladesh, Fiji, Zambia, Israel, Lebanon, Tonga, Turk-
menistan, Ukraine, Haiti. 

Time series plots 

Figure 2(a) presents the time series of positive fu cases in Brazil. From the plots, it can 
be seen that the series does not appear to be stationary, due to a very distinct seasonal 
pattern. Figure 2(b) shows the number of average positive cases each month in Brazil. 
The months of April, May and June (close to winter in Brazil) are the ones presenting the 
highest incidence of infuenza. In addition, the months with the lowest number of cases 
of infuenza are November, December and January, which corresponds to summertime. 
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Figure 2. Time series and monthly average of fu incidence in Brazil. 



Figure 3(a) shows the time series of positive fu cases in the North America Region. 
The series presents a very distinct seasonality with peaks occurring at the beginning/end 
of the year (winter season). Figure 3(b) illustrates the number of average positive cases 
each month in the North America Region. December, January, February and March are 
the months with the highest number of infuenza cases, which, not coincidentally, are the 
peak of the winter in the northern hemisphere. 
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Figure 3. Time series and monthly average of fu incidence in North America. 

Figure 4(a) shows the time series of positive fu cases in the South America Region. 
Like the others, the time series shows a remarkable annual seasonality, and is, therefore, 
not stationary. Figure 4(b) shows the monthly average of positive cases in the South 
America Region. It can be seen that, as winter approaches the southern hemisphere, the 
number of cases increases. The months with the highest incidence of infuenza are June, 
July and August (winter season). 
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Figure 4. Time series and monthly average of fu incidence in South America. 

Figure 5(a) shows the time series of positive fu cases in the Central America Region. 
Notice that between the years 2009 and 2010 the incidence of infuenza is much higher 
than the other years. The swine fu (H1N1) is the main reason for this peak, since 
Mexico is considered the origin and epicenter of this epidemic. In addition, the time 
series presents a distinct annual seasonality. Figure 5(b) shows the monthly average of 
positive cases each month in the Central America Region. The graph shows a peak in 
the incidence of infuenza in September. 
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Figure 5. Time series and monthly average of fu incidence in Central America. 

Figure 6(a) shows the time series of positive fu cases in the European Region. Anal-
ogously to the previous cases, the series presents a clear annual seasonality. Figure 6(b) 
presents the monthly average of positive cases by month in the European Region. The 
plot shows a behavior similar to that of the North America Region, since the months 
with highest incidence of infuenza are December, January, February and March (winter 
season). 
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Figure 6. Time series and monthly average of fu incidence in Europe. 

Figure 7(a) shows the time series of positive fu cases in the South Asia Region. The 
series behavior is similar to the other ones. Figure 7(b) shows the the monthly average 
of positive cases for each month in the South Asia Region. Incidence of infuenza peaks 
in March and August. 
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Figure 7. Time series and monthly average of fu incidence in South Asia. 



Figure 8(a) shows the time series of positive fu cases in the Western Pacifc Region. 
As with the others, the series behavior shows strong annual seasonality. Figure 8(b) 
illustrates the monthly average of positive cases for each month in the Western Pacifc 
Region. Although this region contains countries in the northern and southern hemisphere 
(for example, China and Australia), the graph shows the typical seasonal behavior of the 
northern hemisphere, since the vast majority of data comes from China. Because of this, 
the number of positive cases is greater in the months of December, January, February 
and March. 
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Figure 8. Time series and monthly average of fu incidence in Western Pacifc. 

The correlation matrix (Figure 9) aims to describe the association between the dif-
ferent regions considered in the work. In this case, the variables are the incidence of 
infuenza in the seven regions. It is interesting to notice that the incidence in Brazil does 
not present any signifcantly correlation with the other regions. However, there is a pos-
itive correlation between the North America Region and the European Region (0.79), 
between the North America Region and the Western Pacifc Region (0.70) and between 
the European Region and the Western Pacifc Region (0.67). 
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Figure 9. Correlation matrix of infuenza incidence in the different regions considered. 



The correlations between the incidences can be confrmed through a graphical anal-
ysis, which aims to compare the time series of the different regions. Figure 10 present 
a time series plot comparing the incidence in the Europe and North and South America 
Regions. It can be seen that the Europe and North America series have a very similar 
behavior and this justifes the high correlation between them (0.79). However, the time 
series behavior in South America is very different from the others, with peaks occurring 
in different epochs with a much smaller magnitude. As a result, its correlation with the 
European Region is only -0.21, and with North America, -0.11. 
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Figure 10. Time series plot comparing the Europe, North and South America regions. 

Figure 11 shows the genetic diversity of the H1N1 and H3N2 viruses in the North 
America Region. In Figure 11(a) (H1N1) we observe a high genetic diversity in 2009, 
due to the swine fu pandemic. There is a peak in 2014 that, according to ?, was a period 
in which the circulating strains of the H1N1 virus caused unusually high levels of the 
disease in middle-aged adults, since the mutation of that period (2013-2014) was very 
particular, avoiding the immune responses in the group of adults. In addition, we observe 
that the dimension of the genetic diversity of the H1N1 virus is greater than that of the 
H3N2 virus. In Figure 11(b) (H3N2) we observe that there is a peak in the year 2011 
and a small growing trend from the year 2013, but no identifable seasonality. 
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Figure 11. North America quarterly genetic diversity time series for the H1N1 and H3N2 viruses. 

Figure 12 shows the global genetic diversity of the H1N1 and H3N2 viruses. Figure 
12(a), relative to the H1N1 subtype, shows a great increase in diversity in 2009, coin-
ciding with the swine fu pandemic. There is a peak in diversity in 2014, refecting the 
same process seen in North America. Furthermore, when comparing the global diversity 



graph with that of North America (H1N1), we notice that both graphs are very similar, 
partly consequence of the fact that a large portion of the global data on genetic diversity 
comes from North America. 
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Figure 12. Quarterly time series of global genetic diversity for the H1N1 and H3N2 viruses. 

Figure 12(b) shows the global diversity of the H3N2 virus. A growing trend is per-
ceived over the years, indicating a possible adaptability of the virus. However, the im-
pact is less than that of North America (H3N2), as the size of global genetic diversity is 
smaller. The series does not show constant mean and variance over time, indication that 
the time series behavior is non-stationary. 

Figure 13 shows the genetic diversity of the H1N1 and H3N2 viruses in Asia. In 
Figure 13(a) (H1N1) there is a behavior similar to the other regions (North America 
H1N1 and global H1N1), except for the year 2014, where the peak of Asian genetic 
diversity is lower. Furthermore, the series does not present any trend or seasonality. In 
Figure 13(b) of the diversity of the H3N2 virus, there is a small increasing trend on 
the genetic diversity over time, which may again indicate an adaptability of the virus. 
However, the dimension of diversity in Asia is smaller when compared to the diversity 
of North America (H3N2). 
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Figure 13. Asia genetic diversity quarterly time series for the H1N1 and H3N2 viruses. 


