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A. Aitchison geometry for compositional data 

Aitchison geometry is here referred to K-part compositions, where K can take differ-
ent values like D, d, N or n when dealing with (N,D) data matrices or their respective 
subcompositions and subsamples as used in Appendix B. For a K-part compositions 
x = (x1,x2, . . . ,xK)

⊤ , y = (y1,y2, . . . ,yK)
⊤ , α ∈ R, C denoting closure and (⊤) denot-

ing transposition, the operations and metrics defned in the K-part simplex, SK , are the 
following: 

Defnition A.1 (Euclidean space operations and metrics). 

Perturbation: x ⊕ y = C(x1 · y1,x2 · y2, . . . ,xK · yK)
⊤ . 

α α α ⊤Powering by a scalar: α ⊙ x = C(α ⊙ x) = C(x1 ,x2 , . . . ,xK) . 

K K1 xi yi
∑∑Inner product: ⟨x,y⟩ = a ln ln .

2K x j y ji=1 j=1 

Defnition A.2 (Aitchison norm and distance). 

∥x∥ = ⟨x,x⟩ , da (x,y) = ∥x⊖ y∥ .a a a 

The centred log-ratio transformation (clr) plays an important role in the Aitchison 
geometry although it does not provide minimal log-ratio coordinates representing com-
positions. 

Defnition A.3 (centred log-ratio transformation). Let x = (x1,x2, . . . ,xK)
⊤ be a K-part 

composition, not necessarily represented in SK . Its centred log-ratio transformation (clr) 
is � �⊤ x1 x2 xKclr(x) = log , log , . . . , log , 

gm(x) gm(x) gm(x) 

where gm(·) is the geometric mean of the arguments. 

The fact that the sum of all components of clr(x) is null is remarkable. The expres-
sion of the Aitchison inner product is simplifed using clr since ⟨x,y⟩ = ⟨clr(x),clr(y)⟩ ,a e 
where ⟨·, ·⟩ is the ordinary inner product in RK .e 

The assignation of orthogonal Cartesian coordinates to a composition is called iso-
metric log-ratio transformation (ilr) (Egozcue et al., 2003; Pawlowsky-Glahn et al., 
2015) and is defned as follows. 

Defnition A.4 (isometric log-ratio coordinates). The ilr coordinates of a K-part compo-
sition x are 

z = ilr(x) = V⊤clr(x) , V⊤V = IK−1 , 

where V is a K × (K − 1) matrix, called contrast matrix, and IK−1 the identity matrix of 
order K − 1. 



Linear functions, from the simplex SK onto R, are identifed to the scale invariant 
log-contrasts 

K K 
φ (x) = ∑ αi logxi , ∑ αi = 0 , 

i=1 i=1 

where the last condition on the coeffcients αi assures that φ is scale invariant (Aitchison, 
1986; Egozcue and Pawlowsky-Glahn, 2019). Special cases of log-contrasts, called bal-
ances, were introduced in Egozcue and Pawlowsky-Glahn (2005). A balance between 
two non-overlapping groups of parts, G, H, has the form r 

nGnH gm(G)
B(G/H) = log , 

nG + nH gm(H) 

where gm(G), and gm(H) are the geometric means of the parts included in the groups 
G and H respectively. Balances are simple since the αi’s of their log-contrasts only 
attain one of three different values, namely a positive value, a negative value, or zero. 
Furthermore, they can be sparse if the involved groups of parts G and H do contain only 
a few parts of x. 

A particular case of ilr-coordinates in which each coordinate is a balance can be ob-
tained by a sequential binary partition (SBP) of the parts of the composition as explained 
in Egozcue and Pawlowsky-Glahn (2006) or Pawlowsky-Glahn et al. (2015). 

B. Relations between spaces of parts and observations. 

B.1. Compositional samples 

When X is viewed as a matrix of observed (o) compositions, statistical elements show 
up as important. Between them, o-centre, o-variation matrix, o-total variance, and o-
Aitchison interdistances play an important role in compositional exploratory analysis. 
Similarly, X⊤ can be considered as a compositional sample and the original parts (p) ap-
pear as compositions. Then p versions of the mentioned statistics can be also considered 
(Pawlowsky-Glahn and Egozcue, 2022). 

In order to discuss these points, consider a compositional sample in a matrix X, 
whose rows are observed compositions xi, i = 1,2, . . . ,N, and Xj, j = 1,2, . . . ,D are the 
D-columns that are named parts. Then, 

⊤ ⊤ ⊤X = (X1,X2, . . . ,XD) = (x1 ,x2 , . . . ,xN )
⊤ . 

An elementary statistical concept is that of sample centre, the compositional coun-
terpart of the average or sample mean in real variables. 

Defnition B.1. (Sample centre of observations and parts) The sample centre of X in OD 

and PN are, respectively, � � � �N DM M1 1
Ceno(X) = ⊙o xi , Cenp(X) = ⊙p Xj . (B.1)

N D 
o,i=1 p, j=1 



When considering Co(X) (Cp(X)) the sample centre Ceno(X) (Cenp(X)) can be 
identifed with the closed vector of geometric means by columns (rows). 

The sample matrix X can be closed to 1 by rows dividing the entries xi by the sum 
of all its elements by rows, Si = ∑D

j=1 xi j. The matrix whose rows are Cxi is denoted 
CoX. Let CoY denote the (N,d)-matrix with entries yi j = xi j/si, where si = ∑d

j=1 xi j, 
so that the rows of CoY, are closed to 1. Therefore, CoY is the sample after taking a 
subcomposition followed by closure by rows. Similarly, the parts (columns) of X can be 
closed by dividing the Xj part by ∑N

i=1 xi j. If necessary the data matrix with closed parts 
is denoted by CpX. Observations xi are compositions represented in OD ≡ SD and the 
parts are in PN ≡ SN . 

Some properties are now straightforward to derive, most of them reported in Pawlowsky-
Glahn and Egozcue (2022). 

Proposition B.1. Closure of observations xi in X is a p-perturbation in PN, while clo-
sure of parts Xj in X is an o-perturbation in OD. 

Proof. The closure of observations (Defnition 2.2), i.e. rows xi of X, consists in com-
puting frst the sum soi = ∑D

j=1 xi j of each row, and then multiplying each part in one row 
−1by soi . Denoting the perturbation-subtraction by ⊖p and so = (so1, so2, . . . ,soN)

⊤ , this 
can be written as 

Co(X) = (X1 ⊖p so,X2 ⊖p so, . . . ,XD ⊖p so) , 

which is a p-perturbation. Analogous reasoning holds to proof that � �⊤ 
Cp(X) = (x1 ⊖o sp)

⊤ ,(x2 ⊖o sp)
⊤ , . . . ,(xN ⊖o sp)

⊤ 

with sp = (sp1,sp2, . . . ,spD)
⊤ and sp j = ∑N

i=1 xi j. ■ 

A consequence of Proposition B.1 is that taking a d-subcomposition of rows in X, 
followed by the closure of each row, implies a p-perturbation of parts on the d-remaining 
parts. Similarly, taking a subsample of X, that is removing N − n rows and maintaining 
n observations, conventionally, the frst x1,x2, . . . ,xn, and then closing them, induces an 
o-perturbation in the remaining columns. 

Also, column (row) operations, like centring or perturbation average, that imply 
a previous closure to proceed, induce an o-perturbation (p-perturbation) on the rows 
(columns). 

Defnition B.2 (Variation matrix). Let X be an (N × D)-compositional data matrix. The 
o-variation and p-variation matrices are, respectively, (D × D) and (N × N) matrices T o 

and T p, with entries � � � � 
Xk xktk j 

o = Varp log , tki 
p = Varo log ,

Xj xi 

where Varp is the sample variance taken along p-columns and Varo is the sample variance 
taken along o-rows. 



Defnition B.3. (Total variance) The total variance of observations and parts are 

D D N N1 1
∑∑ ∑∑ t p 

ki ,totVaro(X) = to 
k j , totVarp(X) = 

2D 2Nk=1 j=1 i=1 k=1 

respectively. 

This defnition of total variance was given in Aitchison (1986). However, it can be 
defned in several ways that help to understand the different log-ratio representations of 
compositions. 

As shown in Egozcue and Pawlowsky-Glahn (2011), 

D 
Varp(clr j(x)) = 

D 1− 

∑∑totVaro(X) = Varp(ilrk(x)) , (B.2) 
j=1 k=1 

N N−1 

∑ Varo(clri(X)) = ∑totVarp(X) = Varo(ilrk(X)) , (B.3) 
i=1 k=1 

B.2. Subcompositions in a sample 

The question is how we can identify CoY as a subcompositional sample of CoX. To 
give an answer to this question, consider that columns of both X and Y are also com-
positions, in general not closed. The matrix CoY has columns Y1,Y2, . . . ,Yd and they 
are perturbative shifts of X1,X2, . . . ,Xd in X, that is Yj = Xj ⊕ p j for j = 1,2, . . . ,d and 
some perturbation p = (p1, p2, . . . , pN)

⊤ which depends on the parts excluded from the 
subcomposition Xd+1,Xd+2, . . . ,XD. 

The dominance of the Aitchison distance under a subcomposition is well-known 
(Aitchison, 1992). For observations and parts, dominance can be formulated as 

Proposition B.2. For any subcomposition Y of X containing the observations x1, x2, it 
holds 

do(x1,x2) ≥ do(y1,y2) . 

Similarly, for any subsample Z containing the parts X1 and X2, dominance of Aichison 
distance in P is 

dp(X1,X2) ≥ dp(Z1,Z2) . 

The total variance of X and X⊤ are related as follows. 

Proposition B.3. The total variance of X by observations and parts satisfy 

N totVaro(X) = D totVarp(X) , 

provided that variances are sums of squares divided by the number of terms, N or D. 
In cases where variances are estimated by dividing by N − 1 or D − 1, these numbers 
appear in the equation substituting N and D. 



Proof. Consider the clr of the observations 

clro(X) = (clr(x1)
⊤ ,clr(x2)

⊤ , . . . ,clr(xD)
⊤)⊤ . 

This matrix can be centred by subtracting the mean by columns. This corresponds to 
perturbation-subtraction of the sample centre of observations, that is 

Zo = clro(X) − 1N [clro(Cen(X))]⊤ , (B.4) 

where 1N is an (N × 1)-matrix of ones. The singular value decomposition of Zo is 

Zo = UoΛoV⊤ , Λo = diag(λ1,λ2, . . . ,λD−1,0) , (B.5)o 

where λi ≥ 0 are the singular values, and Uo and Vo are such that UoU⊤ = IN ando 
V⊤Vo = ID. The zero entry of Λo is due to the zero-sum constraint of clr-vectors. Thiso 
null singular value and the corresponding vectors (last column in Uo and in Vo) can be 
suppressed since they do not infuence Zo. Maintaining the same notation for the reduced 
versions of Uo, Vo and Λo, the decomposition of Zo is written in the same way as in Eq. 
(B.5). It characterizes Vo as a (D × (D − 1)) contrast matrix and UoΛo a matrix whose 
i-th row contains the ilro(xi) with respect to Vo. Also, the fact that the squares of the 
columns of Uo sum to 1, indicates that the square singular values divided by N, λi 

2/N, 
are the variances of the ilr components in the columns of UoΛo. Since the centring in Eq. 
(B.4) does not affect the computation of variances, the total variance of observations is 

D−1 
totVaro(X) = 

1 
∑ λk 

2 .
N k=1 

The same procedure (clr and centring) can be applied to X⊤ . After removing the last 
null singular value, the decomposition is now 

Zp(X) = UpΘpV⊤ , Θp = diag(θ1,θ2, . . . ,θN−1,0) .p 

Assuming N ≥ D, it holds that θk = λk for k = 1,2, . . . ,D − 1 and that θk = 0 for k = 
D,D + 1, . . . ,N − 1. Hence, 

D−1 
totVarp(X) = 

1 
λ 2 ,

D ∑ k 
k=1 

and then 
N totVaro(X) = D totVarp(X) . 

■ 

In Egozcue et al. (2018) (Appendix) and Martı́n-Fernández et al. (2018), it was 
proven that the variation matrix of observations is directly related to the square inter-
distances between parts, as stated below. 



Proposition B.4. Let T o and T p be the variation matrices associated with the compo-
sitional sample X. Consider the matrices of square interdistances Mo and Mp whose 
entries are respectively [Mo]i j = d2(xi, x j), i, j = 1,2, . . . ,N and [Mp]i j = d2(Xi,Xj),a a 
i, j = 1,2, . . . ,D. They satisfy 

N T o = Mp , D T p = Mo . 

A negative property is important for discussing subcompositional coherence. In fact, 
the p-inner product is not perturbation invariant and taking into account Proposition B.1, 
it means that the p-inner product is not invariant under o-subcomposition. 

Proposition B.5. The p-inner product (Defnition A.1) is not p-perturbation invariant. 

Proof. For two parts X1, X2 and Q ∈ PN , it holds 

⟨p1 ⊕p Q,p2 ⊕p Q⟩ = ⟨p1,p2⟩ + ⟨p1,Q⟩ + ⟨Q,p2⟩ + ⟨Q,Q⟩ .p p p p p 

Consequently, in general, ⟨p1 ⊕p Q,p2 ⊕p Q⟩p ≠ ⟨p1,p2⟩p . ■ 

The counterpart of the previous negative result is the following proposition 

Proposition B.6. Each component of X1 ⊖p X2, is p-perturbation invariant. 

Proof. Let Q ∈ ON defne a perturbation for parts and consider the shifted parts X1 ⊕ Q 
and X2 ⊕ Q. Then, 

(X1 ⊕ Q) ⊖p (X2 ⊕ Q) = X1 ⊖p X2 , 

thus implying p-perturbation invariance, in particular each component is an invariant 
function (IfS). ■ 

All functions of p-differences of parts are also invariant under perturbation or, equiv-
alently, under o-subcomposition. Therefore, when trying to relate two parts, say X1, X2, 
—independently of the o-subcomposition they are included in— functions of X1 ⊖p X2 
are potential candidates. The Aitchison p-distance da(X1,X2) = ∥X1 ⊖p X2∥a and related 
functions are then serious candidates to measure co-variability between the two parts. 
The next proposition is a consequence of Proposition B.6. 

Proposition B.7. The Aitchison p-distance (Defnition A.2) is p-perturbation invariant. 

C. Are inverse or negative relations between compositions 
meaningful? 

Many researchers, both theoretical and applied, would like to have tools to recognize in-
verse or negative relations between parts of a compositional sample. In a frst attempt to 
clarify what such a negative relation is, we could loosely say that two parts are negatively 
related when one part increases, while the other part decreases. This way of thinking is 
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Figure C.1. A fve-part composition following a straight line with parameter t in the simplex is 
sampled in 100 data points although individual points are not shown for clarity. The left panel 
shows the fve parts closed to 1. The middle panel represents the three parts (black, red, green), 
closed in the subcomposition of three parts. Closed black and red parts in a two-part composition 
are shown in the right panel. The monotonic relation between these three parts changes with the 
subcomposition. 

illusory since it strongly depends on the subcomposition in which the observations are 
taken. This is due to two facts. The frst one is that, as mentioned in Section 4.1, taking 
subcomposition in the observations produces a perturbation in the compared parts which 
can break any monotonic behavior in the reference parts; the second one is that always 
one can construct an additional part that, after closure, changes the behavior of the two 
initial parts either to increasing-increasing or decreasing-decreasing. To illustrate this 
effect of closure, a 5-part compositional sample of 100 data points has been generated 
following a straight line in the simplex. Figure C.1, left panel, shows the fve parts after 
closure. The parts in black, red, and green (thick lines) are taken as references. They 
approximately decrease jointly along the parameter t of the straight line. The middle 
panel of Figure C.1 shows the three reference parts, now closed in a subcomposition of 
three parts. The parts in black and in red maintain their decreasing-decreasing relation 
but the black-green parts become nicely negatively or inversely related. Finally, in the 
2-part subcomposition black-red (Fig. C.1, right panel) the two parts appear inversely 
related as mandatory in any nonconstant 2-part composition. This shows that the mono-
tonic defnition of inverse relations depends on the subcomposition in which they are 
observed. 

A more elaborate view of the negative relation between parts X1, X2 could be to solve 
approximately the equation 

X1 = b ⊙p X2 ⊕p A , X1,X2,A ∈ Sn , b ∈ R , (C.1) 

for a minimum of ∥A∥a. For ∥A∥a = 0, there is an exact linear association (equality 
of compositions) between X1 and b ⊙p X2 and, particularly, when b = 1, X1 and X2 are 
proportional and compositionally equivalent (Defnition 2.1). One is tempted to say that 
X1 and X2 are inversely or negatively related when, being ∥A∥a = 0, b = −1. However, 
the values of A and b depend on the subcomposition except when b = 1. Assuming that 
taking a subcomposition introduces a p-perturbation P on the parts, the previous model 



is transformed into 

X1 ⊕p P = b ′ ⊙p (X2 ⊕p P) ⊕p A ′ = b ′ ⊙p X2 ⊕p (b ′ ⊙p P⊕p A ′ ) , P ∈ Sn . 

Isolating X1 and substituting it by Equation (C.1) 

b⊙p X2 ⊕p A = b′ ⊙p X2 ⊕p ((b′ − 1) ⊙p P ⊕p A′ ) , 

(b − b ′ ) ⊙p X2 ⊕p (A ⊖p A ′ ) ⊕p ((b ′ − 1) ⊙p P) = n , 

where n is the neutral element in Sn . The values b, b′ , and the compositions A, A′ will 
be equal whenever the term involving P is neutral and this is attained for b′ = 1 and 
arbitrary P. 

As a consequence, trying to extract a negative or inverse relation from a negative 
value of b in Equation (C.1) always depends on the subcomposition considered. Thus, 
this defnition will never satisfy the condition of subcompositional dominance. 
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