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Kernel Weighting for blending probability and
non-probability survey samples
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Abstract

In this paper we review some methods proposed in the literature for combining a non-
probability and a probability sample with the purpose of obtaining an estimator with a
smaller bias and standard error than the estimators that can be obtained using only
the probability sample. We propose a new methodology based on the kernel weighting
method. We discuss the properties of the new estimator when there is only selection
bias and when there are both coverage and selection biases. We perform an extensive
simulation study to better understand the behaviour of the proposed estimator.
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1. Introduction

Probability sampling methods are well established by statistical offices and researchers
as one of the primary tools for data collection in surveys. This is because when con-
trolling the sampling design, it is feasible to make valid statistical inference about large
finite populations using relative small samples. There exists an extensive literature on
methods for probability sampling and design-based inferences for complex surveys.
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However, the deployment of probability sampling methods has become more chal-
lenging, as there has been a notorious decline in response rates (Marken, 2018; Kennedy
and Hartig, 2019) with the subsequent increase of the survey costs. In addition, new
data sources which have arisen in recent years could be considered as alternatives to
survey data. Examples are large volume datasets coming from sources such as passive
data or “data lakes”, and web surveys that have the potential of providing more timely
estimates, as well as offering easier data access and lower data collection costs than tra-
ditional probability sampling, leading to larger sample sizes. On the other hand, there are
serious issues concerning the use of non-probability survey samples (or volunteer sam-
ples) for estimation. Non-probability surveys are those where the inclusion probability
is not known and/or not strictly positive for any individual in the population, which is the
case for volunteer samples obtained from the Internet or similar means. For this reason,
non-probability surveys are often known as voluntary surveys. The primary issue with
these data sources is that the selection mechanism, which decides what individuals are
eventually included in the dataset, is often unknown and may induce serious coverage
and selection biases. Coverage bias can be defined as the bias that arise from the lack of
exhaustiveness of the sampling frame from which the sample is drawn, this is, the inabil-
ity of the sampling frame to include all the members of the target population. Selection
bias is a term that comprises different types of errors when drawing the sample, but the
most common in the aforementioned data sources is self-selection: the decision of being
in the sample or not is taken by the individuals themselves, meaning that the inclusion
probabilities are not given by the sampling design but by the participants, and therefore
these probabilities remain unknown, constituting a non-probability sample. The gener-
alization of the results under these biases is therefore compromised.

Despite these limitations, non-probability survey designs may be particularly useful
in several cases. For example, they can be used in those cases where the target population
is a small subpopulation unlikely to meet sample size requirements, or when we are
interested in non-demographical strata which cannot be considered in a sampling design.
Given the potential of non-probability surveys, statisticians have studied the integration
or combination of data from probability and non-probability samples. Some reviews on
methods of statistical data integration for finite population inference can be consulted in
Buelens, Burger and vanden Brakel (2018), Valliant (2020), Yang and Kim (2020) or Rao
(2020). The number of papers that are emerging in recent years in this field is immense.
The importance that the topic is taking has motivated the holding of specialized sessions
in many statistics and survey congresses as well as a special discussion paper in the
Survey Methodology journal (vol 48, n.2). The paper of Wu (2022) ably and usefully
summarizes the state of the literature of analysis of non-probability survey data and
comments to the article by Bailey (2022), Elliott (2022), Lohr (2022), Meng (2022) and
Wang and Kim (2022) deal with aspects of great interest and topicality in this subject.

Different data integration methods, which are based on combining probability and
non-probability samples, have been developed in the literature on survey sampling.
These integration methods can be divided into three groups depending on the availabil-



Rueda, M.M., Cobo, B., Rueda-Sanchez, J.L., Ferri, R., Castro, L. 95

ity of the study variable: available in the non-probability sample only, in the probability
sample only, or in both samples.

Many methods consider the first case, where the target variable has been observed
in the non-probability sample only. In this situation, the probability sample plays an
important role as the reference data, and can be used to increase the efficiency of the
estimates through a variety of adjustment approaches to account for the selection bias
of non-probability samples. However, other methods were also developed from dif-
ferent perspectives according to the availability of auxiliary information. Calibration
(Deville and Sarndal, 1992; Ferri-Garcia and Rueda, 2018), propensity score adjustment
(PSA) (Lee, 2006; Lee and Valliant, 2009; Castro, Rueda and Ferri-Garcia, 2022), kernel
weighting (KW) (Wang et al., 2020), statistical matching (or mass imputation) (Rivers,
2007; Beaumont, 2020), double robust estimation (Kim and Wang, 2019) and superpop-
ulation modeling (Valliant, Dorfman and Royall, 2000; Buelens et al., 2018) are relevant
techniques to mitigate selection bias.

When the non-probability (or volunteer) survey contains auxiliary variables but no
study variable, Medous et al. (2022) shows how the use of a non-probability database
can improve estimates from a probability sample and they define a class of QR predictors
(Sarndal and Wright, 1984) asymptotically design-unbiased under certain conditions.

In this paper we consider the third situation posed above, where the study variables
are measured in both samples. In Section 2 we review the estimation from probability
and non-probability samples to introduce the notation and the framework. In Section 3
we revisit some important works in data integration for handling selection bias in our
context. In Section 4 we adapt the kernel weighting method introduced in Wang et
al. (2020), to data integration. First, we consider a situation where there are no cov-
erage biases (there is a one-to-one correspondence between the target population and
the sampling frames), and we propose a KW estimator by a linear combination of bi-
ased and unbiased estimators of a population mean. When undercoverage occurs in the
non-probability sample (the sampling frame does not include all members of the target
population), as is usual in practice, we propose a KW estimator based on dual frame
methodology. We derive conditions such that these proposed estimators are asymptot-
ically design-unbiased. In Section 5, we use Monte Carlo simulations to compare the
proposed method with several models and show that the kernel weighted estimator is a
good compromise for several setups. Finally we conclude and give perspectives in 6.

2. Context and notation

Let U be the target population of size N, U = {1,...,i,...,N}. Let s, be the set of
n, units selected from the frame U, using a non-probability (volunteer) data collection
method. Let s, be a probability sample of size n, selected from a frame U, under the
sampling design d = (S,, P,), where S, is a subset of the universal sample space S and P,
is a probability function defined on S,, with 7; > O the first order inclusion probability
for individual i and 7;; the second order probabilities for individuals i and j. Let be
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d; = 1/m; the sampling design weight of unit i. We consider a situation in which U, and
U, coincide with the population under study U. That is, there are no coverage biases in
either the probability or the non-probability sample.

Let us denote with y; the collected value on the unit i for the target variable y and let
x; be the observed values for individual i for a vector of covariates x. Both y and x have
been measured in both samples.

The target parameter is the population mean, Y = % Y 7 vi, that can be estimated from
the probability sample using the Horvitz-Thompson estimator:

s Ly
5= Ldv (1)

icsy
and from the volunteer sample with the naive estimator:

5,=Y & 2)

i€s, Ry
If we assume a situation in which there are no non-sampling errors (coverage errors,
observation errors, non-response...) the estimator y, is unbiased but if the sample size is
small it can lead to estimates with large sampling errors.
Let us consider the variable

1 i€s, .
I, = =1,....N.
i {0 ey s, o A= LN 3)

The estimator y,, is biased (Kim and Wang, 2019) and its bias is given by
— 1
Ev(yv - YN) = ?EV{COV(I\M)))}U
v

where E,(.) denotes the expectation under the selection mechanism model of the non-
probability sample and f, = n,/N. Thus the mean squared error (MSE) is given by the
formula
MSE(y,) = flzEv{Corr(Iv,y)Z}Var(Iv)Var(y).
v

Therefore, a non-probability sampling where E,{Corr(I,,y)} # 0 induces a certain se-
lection bias to the results.

In the next section we will consider how we can estimate the mean population by
using a data integration estimator that combine information for these two independent
surveys.

3. Methodology in data integration for handling selection bias

3.1. Some previous works

Starting with the work of Elliott and Haviland (2007), these authors consider the prob-
lem of combining the two samples by means of a linear combination of the biased and
unbiased estimators of the population mean:
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Yeom = O, + (1 - Ot)yv.
The best estimator, in terms of efficiency, of this combination when the magnitude of the
bias is known is given by:
Voo +3,(B+ )
20 | O

; “)

YEH =

being y, and y, the sample means, with variances < and % and B the bias of y, .

In practice, the bias and variances have to be estlmated usmg the information available
from both samples. The bias can be estimated as the difference between the sample
means of both samples. In addition, the authors calculate the maximal contribution of the
non-probability sample in terms of effective sample size, the role of the non-probability
sample size in approaching this limit and the roles of both sample sizes in estimating bias
with enough precision. They show that a large probability sample size (1000-10000) is
needed for reasonably precise estimates of the remaining bias in initially bias-adjusted
non-probability sample estimators.

Other important work is due to Disogra et al. (2011). Their proposal, based on calibra-
tion weighting, considers that auxiliary variables needed for calibration weighting must
reliably differentiate between the probability sample and the non-probability sample.
This calibration method has four steps:

1. Authors do a post-stratification raking calibration of s,, using a set of demographic
and geographical variables.

2. They combine the weighted s, with the unweighted s,. The combined sample is
then weighted according to the probability sample’s benchmarks from the previous
step.

3. They compare the answers from early-adopter questions between the probability
sample from step 1 to the answers from the blended sample from step 2.

4. They select some minimum number of early adopter questions to include in the
raking due in Step 2.

Therefore, this procedure requires a good selection of early adopter questions that are
included in the two surveys and that we believe will help to differentiate the samples.
Recently, Kim and Tam (2021) developed two estimators using combined data from
probability sampling and non-probability sampling based on the total decomposition:

Y:Yv"’Yw

where ¥, = Ye,, yi = Liev i yi and Ye = Yiey s, ¥i = Liey (1 — Li)yi. Since y is mea-
sured for all units of non-probability sampling, Y, is known. Therefore, we only have to
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estimate Y.. Authors proposed a first estimator where Y, is estimated using the expansion
estimator based on the probability sample

Vor = o+ X i1 = i)
ies,
In Poisson sampling, the variance of yj,; is smaller or equal to the variance of y, if a
condition on the study variable for simple random sampling without replacement holds.
When N is known, Kim and Tam (2021) propose to improve the previous estimator using
the following one:

B 1
YD1 = 3 Y, + (N —ny)

Yies, di(1— Ivi)y,-)
Ziar di(l - Ivi)

Authors prove that the variance of ypp; is smaller than the variance of y, for simple ran-
dom sampling. They also discuss how to improve the efficiency of this data integration
estimator by using ratio and calibration estimation.

Other works in this matter are briefly introduced below.

Fahimi et al. (2015) improve the blended calibration estimator provided by Disogra
et al. (2011). Elliot (2009) develop pseudo-weights to create a representative sample us-
ing data from the non-probability sample under model assumptions that can be partially
tested. With this approach, probability and non-probability samples can be blended,
and the resulting sample can be treated as a probability sample with these new pseudo-
weights. Dever (2018) proposes a hybrid estimation method based on the combined data
file containing probability-based and nonprobability sample cases in a similar way as
dual-frame estimation. For this hybrid estimation method , both samples cover the same
portion of the population, referred to as common support. The common support assump-
tion is a necessary first step and the authors propose sample matching as the method to
evaluate this common support assumption. It is very difficult to make this assumption
when we work with web surveys (or social media) and with probabilistic surveys based
on population records, as the coverage differences between these samples may be very
large and the method cannot be applied. On the other hand, the authors do not solve the
problem of the determination of the lambda factor that glues the samples into one data
file for population inferences. Wisniowski et al. (2020) consider a Bayesian approach
for integrating a small probability sample with a non-probability sample. They show
that considering informative priors based on non-probability data can reduce the vari-
ance and mean squared error of the coefficients of a linear model.

Recently, Xi et al. (2022) do an extensive simultation study for comparing various
weighting strategies where probability and non-probability samples are combined with
weight normalization and raking adjustment. They apply these methods to a teen smok-
ing behaviour survey. Nekragaite-Liege, Ciginas and Krapavickaité (2022) consider
the case of estimating proportions when a non-probabilistic sample and scraped data
are available. Some important works (Robbins, Ghosh-Dastidar and Ramchand, 2021;
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Rueda et al., 2022) have appeared in which probability and non-probability samples are
combined based on the propensity score adjustment technique. In the next section, we
explain this technique and how it has been used by these authors.

3.2. Some estimators based on propensity score adjustment

The key concept in a non-probability survey sample is the selection mechanism. This
mechanism is usually unknown and requires a suitable prediction model for the inclu-
sion indicator variable. In this context, propensity scores, T,;, can be defined as the
probability of the i-th individual of being included in the sample, P(,; = 1), given the
characteristics of the unit.

Let x be a vector of covariates measured in s, and also in s,. We make the following
assumption:

Assumption 1 (strong ignorability condition): the indicator variable /, and the study
variable y are conditionally independent given x; i.e. P(I, = 1|x,y) = P(I, = 1|x).

We assume that the selection mechanism of s, verifies Assumption 1 and follows the
model:

Thyi :P(Ivi = 1’Xi) :pi(x) = m(vai)ﬂ = 17"'7N7 (5)

where m(+) is a given function with second continuous derivatives with respect to .

We aim to estimate propensity scores using data from pooling both samples. The max-
imum likelihood estimator of m,; is m(7,x;) where ¥ maximizes the pseudo-likelihood
(Chen, Li and Wu, 2020):

m(¥,Xi) .
; T miy.x) +;—llog (1—m(y,x;)). (©6)

The estimated propensities 7#,; = m(7,x;) are thus used to readjust the propensity bias of
the volunteer sample.

Based on these propensities, Robbins et al. (2021) define several estimators integrating
the two samples. A first estimator is calculated weighting estimators from each sample:

Yror1 = 01y, + (1 — 1)y, @)

(s, 7 ) (Ko, #i°)
o ey A (e 7 Ny )
For the second estimator, the authors calculate the values p; = m;/(1 — #,;) for all indi-

viduals in the joined s = s, Us, and obtain a simple Horvitz-Thompson type estimator
with these new weights:

where 3, =+ ¥, vi/g; with q,:”f””_ and o =

Tyi

YRDR2 = Zyz/Pu )

16?

Let x be a set of auxiliary variables, related to y, whose population totals are known.
Two calibration estimators are also proposed:
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YRDR3 = %(va Yi*wii+ Y yi*wz;) where wy; and wy; are as close as possible to 1/p;
fulfilling 7, = } ¢, w1iX; = Y.c5, w2:iX; and the estimator:

; 2
Taors = 025+ (1 =05, being 00 = o= .

Rueda et al. (2022) propose the combined estimator:

Yepsa = Y, + (1 —00)y pw 9

being y;py = st vi/ ftyi, and oy = 7 ‘1‘72 where V; and V5 are estimators of the variance
of ¥, and the MSE of y,;py respectlvely They also propose alternative methods that
combine propensity score adjustment and calibration using machine learning predictive
algorithms.

Burakauskaité and éiginas (2022) consider a few ways on non-probability integra-
tion by combining generalized difference estimator and post-stratified calibration esti-
mator with the inverse probability weighted estimating for estimating proportions in the
survey on population by religion, native language and ethnicity in Lithuania.

The above methods can reduce bias by using propensity scores to estimate partici-
pation rates of non-probability sample units. However, they are sensitive to propensity
model misspecifications and can largely increase the variance of the estimators due to
extreme weights. A possible way to reduce the effect of extreme weights is the kernel
weighting (KW) method Wang et al. (2020) that uses propensity scores as a measure
of similarity, and therefore is less sensitive to model misspecification while avoiding the
extreme weights that may be produced in propensity score estimation. In the next section
we introduce the KW approach to create pseudo-weights for the non-probability sample
and propose a new method of integration based on this KW estimator.

4. Estimators based on kernel weighting

The KW method was developed by Wang et al. (2020), and is a method similar to the
PSA since both consist of creating pseudo-weights for the non-probability sample using
auxiliary variables of a reference probability sample. However, what differentiates them
is the way in which these new weights are generated, although as in PSA we will use
the estimated propensities to participate in the survey. As it occurred in that case, these
propensities can be estimated in different ways, even though the most commonly used
one is by means of logistic regression models which may entail several disadvantages for
large populations in comparison to modern prediction methods such as machine learn-
ing (ML) algorithms. The ML methodology does not require strong parametric model
assumptions and therefore is robust to model misspecification. Recently, ML algorithms
have been considered in the literature for the treatment of nonprobability samples (see
e.g. Ferri-Garcia and Rueda (2020), Buelens et al. (2018), Kern, Li and Wang (2021),
Chu and Beaumont (2019), Castro et al. (2021). Their findings showed that ML methods
have the potential to remove selection bias in nonprobability samples to a greater extent
than logistic regression in some scenarios.
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The KW is based on using these propensities to measure the similarity between individu-
als based on the distributions of the auxiliary variables of the reference sample s, and the
non-probability sample s,. These similarities will be used as weights for our estimator,
after smoothing the distances using kernel functions.

The estimated propensity score for k € s, Us, is obtained as
R = Emlhe = 1]x¢],

where M will be one of the mentioned machine learning models to estimate this propen-
sity and

- 1 for ke€s,

Ly = .

i {Oforkesr , KESUS

Once we have these estimated propensities, we will calculate the distance between the
two individuals belonging to the different samples. We define this distance as:

d,‘jZﬁi—ﬁ'j, i €Sy, jGSr.

This distance between individuals will have a value between —1 and 1. We seek to
smooth these values, which is why we use a kernel function centered at zero. There are
many alternative kernel functions that can be used (normal function, standard normal,
triangular, etc.), see Servy et al. (2006). The closer this distance is to zero, the more
similar the individuals are with respect to their auxiliary variables (propensities are es-
timated depending on the values of the auxiliary variables). Moreover, the more similar
the individuals are, the greater the proportion that the KW will assign to the original
weight of the reference sample dy; to the i unit of the volunteer sample. This proportion
is called the kernel weight, whose expression is as follows:

ki — K{d;/h}

_—7 .6 ) .6 b)
Yies, K{dij/h} PR I

where K{-} is a zero-centred kernel function Epanechnikov (1969), and 4 is the band-
width corresponding to that kernel function. In addition:

Zkij =1, kl‘j S [0,1].

i€s,

The larger the value of the kernel weight k;; is, the more similar the propensities will be
among individuals i € s, and j € s,.

Once we have the kernel weights, the pseudo-weights KW can be calculated, w&" for
i € s, which are the sum of the weights of the reference sample d;, where j € s,, weighted
by the kernel weights k;; for the unit i € s,:
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KW _ . .
w; —Zdjkij, i €Sy, JES
Jjes,

Therefore a KW estimator for the population mean is:

= 1 KW
Ykw = N Z wi i,

iesy,

KW _ _
where Y e, w; —Zjesrdj,because of Yies kij=1.

The KW estimator is consistent if certain regularity conditions are met (see Appendix
1). Furthermore Kern et al. (2021) improve the KW method by pairing it with machine
learning, in particular, they considered conditional random forests, model-based recur-
sive partitioning, gradient tree boosting and model-based boosting for estimating the
propensities and constructing pseudo-weights. Kernel smoothing is also used by Chen,
Yang and Kim (2022) in the case when the study variable of interest is measured only in
the non-probability sample. These authors consider mass imputation for the probability
sample using the non-probability data as the training set for imputation.

Next, we proceed to present the new proposed method based on KW in two different
situations: firstly, if there is no coverage bias for the sample of volunteers, and secondly,
when such bias exists.

4.1. Blending the samples with kernel weighting

First, we consider the situation where there is no coverage bias (U, and U, are equivalent
to the population under study U). In this situation we propose a class of estimators based
on both samples:

Yo = ay, + (1 —a)ygw, (10)

where o is a nonnegative constant such that 0 < o < 1.

We study the asymptotic properties of the proposed estimator under the framework of
Isaki and Fuller (1982) in which the properties of estimators are established under a
given sequence of populations and a corresponding sequence of random sampling de-
signs.

Theorem 1. Under assumption given in Appendix 1, the proposed estimator y- — Y in
probability as N — o0, n, — o0, n, — oo with % = O(1) and 5 = O(1).

Proof. Assumptions la and 2a give sufficient conditions for the Horvitz-Thompson
estimator Y to be consistent (Isaki and Fuller, 1982). Under these conditions yz — Y in
probability as the finite population size N — oo.

Under assumptions 2a-2c Wang et al. (2020) (Appendix A) proves that ygy — Y
in probability as the finite population size N — oo, the survey sample size n, — o and
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the probability sample size n, — oo with n.,/N = O(1). Then it is obtained that y. —
aY + (1 — a)Y the proposed estimator converges to Y.
Now, we consider the problem of how select the ¢ parameter. A simple selection for
« is to weight each estimator by the weight that sample has in the total sample so that
oy, =n,/(n,+ny).

An optimal choice of & can be calculated by minimizing the MSE of y., which is
given by

MSE(yc) = o*V (5,) + (1 — &) > MSE (¥gy ) +206(1 = )E((, — ¥) (Fgw — ).

As this equation is a quadratic equation of «, its sole extreme is found straightfor-
wardly. The values of & that minimizes this MSE are given by

MSE(YKW)_E((yr_?)(yEW ~Y)) _
V() +MSE(Ygw) —2E((, —Y)Okw —Y))

1D

Copr =
The optimal ¢, can be used to define the optimum expression

yCopt = Oopty, + (1 - aOpt)yKW-

The optimal coefficient «,,; depends on population parameters, which are unknown
in practice, and so y,,,, cannot be calculated.

Though the sampling procedure of the nonprobability and the probability sample can
be treated as independent, the estimator ygy uses information from both non-probability
and probability sample, and therefore can be correlated with y,. If we assume that the
term E((y, —Y)(gw — Y)) is small relative to MSE (g ) and V(3,), and denoting by
V(y,) the Horvitz-Thompson estimator of V(¥,) and MSE (¥xw) an estimator for the
MSE (Yxw ), we can consider the following estimator for the population mean:

Yco = /\MfE (yKWE — V== 7V 0r) —VKw- (12)

MSE (Ygw) +V (5,) MSE (Ygw) +V (5,)
An estimator for the variance of ygy, can be obtained by using resampling methods
Wolter (2007). By using resampling techniques, one can incorporate aspects of an es-
timation process into variance calculations that are not easily captured algebraically.
Robbins et al. (2021) consider a delete-a-group jackknife for variance estimation when
use weighting methods for blending probability and convenience samples. Rafei, Elliott
and Flannagan (2022) and Chen et al. (2022) use bootstrap as the method for variance
estimation when the study variable of interest is measured only in the non-probability
sample. Wang et al. (2020) considered the jackknife method for calculating an estimator
of the V (ykw ). The bias of ygy, can be estimated by ¥, — Y-
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4.2. Blending the samples with coverage bias

Web and social media surveys usually have a significant under-coverage bias. Thus,
we consider now a more realistic situation where there is also under-coverage bias in
the non-probability sample. Chen et al. (2020) highlight the estimation problems in
the scenario of having zero propensity scores for certain units in the target population.
According to these authors, the severity of the problem depends on the proportion of the
uncovered population units and the discrepancies between the two parts of the population
in terms of the response variables. Chen (2020) also discusses issues with incomplete
sampling frames where units have zero propensity scores and illustrates the danger of
applying regular procedures when the sampling frame is incomplete proposing methods
to adjust for under coverage bias from the nonprobability sample.

We will consider that U, covers the entire finite population but the frame U, be in-
complete (U, C U). The population of interest, U, may be divided into two mutually
exclusive domains, ab = U, and a = U NUY . Units in s, can be divided as s, = ;4 U $,qp,
where s,, = s, Na and s,4 = 5, N (ab).

Following Hartley’s idea (Hartley, 1962), we can obtain a combined estimator of ¥ by
weighting the estimators obtained from each sample:

_ 1, 4 ~ ~
yH(’?):N(Ya+nYab+(1—n)YKW), (13)
where Ya = ZiESW dyi, f]ah = Ziesrab d;y; and IA]KW = Ziexv WlKWyi and0 < n < 1.

Now, we denote as:
d; if i€s,
d? = Tld,‘ if €584 (14)
A—mwk" if ies,
then |
(M) = 5 Ly

ies

Theorem 2. Under the regularity conditions given in Wang et al. (2020) for the sampling
design and the propensity scores, the Hartley estimator yg (1) is asymptotically unbiased
forY.

Proof. Since each domain is estimated by its Horvitz-Thompson estimator, ¥, + 1Yy,
is an unbiased estimator of ) ;c,vi + N Y;cqp Vi, for a given 1. Under the regularity con-
ditions given in Wang et al. (2020) the estimator Yxw is asymptotically unbiased for
Yu» = YicapVi» thus the estimator y (1) is asymptotically unbiased for Y.
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Though U, and U, are sampled independently, the estimators ¥, + nffah and Yxw are not
independent because, Yxw uses information from the probability sample. In the same
way as in the previous section, we are going to assume that this dependence is small in
relation to the variances of the estimators, and we suppress the covariance term between
these two estimators in the calculus of the asymptotic variance of y;(n). Under this
assumption, the asymptotic variance of the estimator is given by the following expression

V) = VTt nT) + V(1 1) k)

-
1 - - .
= 5 (V) + 17V (Fap) + (1 =)V (Fiw)), (15)

where V (¥,) and V (¥, ) are computed under the sampling design d = (s, p,) and V (Yxw )
under the propensity model ,.

The choice of the value for 1 is an important issue. For a fixed value of 7, the estimator
is simple to implement and gives internal consistency given that the same set of adjusted
weights is used for all variables. The value of n = 0.5 is frequently used in dual frame
estimation (Mecatti, 2007). The value of 1 that minimizes the asymptotic variance in 15
is:

(16)

o

B MSE (Yxw) — cov(¥,, Yop)
V (Yup) +MSE (Yiw)

This value depends on unknown population variances and covariances. By substituting
the variances and MSE for its sample based estimators we obtain an estimator that we
denote by yy (opt). We note that these modified weights are random variable and their
variability needs to be accounted for in standard errors of estimators.

Note. In formula 13, the true population total N is used. It is possible to use an estimator
N instead of N to construct a type-Hajek estimator as in the paper of Chen et al. (2020).
In our case we would first have to decide which estimator N to use. For example based
only on the non-probability sample N} = Yies, wKW only on the probability sample N, =
Y. ins, di or some estimator based on the two samples. This choice can influence the
biasness and the efficiency of the proposed estimator, and adds one more difficulty to the
problem.

5. Simulation studies

We have conducted a simulation study to compare the efficiency of some of the pro-
posed estimators based on KW. We are interested in comparing those estimators with
some alternative estimators defined in Section 3, in the effect of the machine learning
algorithm used in KW, in the effect of the kernel function used in the construction of
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KW pseudo-weights and also in the effect of considering coverage bias. In order to il-
lustrate that the superiority of some estimators compared to others depends on the data,
we define different setups based on different artificial populations and different sampling
strategies.

5.1. Populations and setups

We consider a finite population of size N = 500000. The variables of interest were
designed with the objective of having various types of relationships with the covariates
and the propensities. We consider 8 auxiliary variables x, 2 variable of interest y and
a variable m,; which indicates the probability of being included in the non-probability
sample. All of them were simulated as follows:

1. The covariates x1,x3,x5 and x7 followed a Bernoulli distribution with p = 0.5, and
X7,Xx4,%¢ and xg followed normal distributions with standard deviation of one and
a mean parameter of 0 or 2, depending on the value of the previous Bernoulli
variable. That is to say, in order to calculate x, we relied on the variable x; and
if this variable was equal to 1, then the mean would be 2, or if the variable was
equal to O, then the mean would be 0. The same procedure was followed for the
rest of the variables. The propensity models were fitted using all of the 8 auxiliary
variables.

2. The non-probability samples were drawn with a Poisson sampling design where
the inclusion probability depends on variables x5, x¢,x7 y xg as:

In <1 Tvi ) — —0.5+2.5(X5i = 1)—|— Z.3_]4]593x6ix8i 25( - 1)’ icU.
Ty X €

3. The target variables were created in order to have different relationships with the
covariates and the propensities were simulated according to the formulas:

y1ii=N(8,2)+3(xs; =1)+5m, i€U;

[ 1 ify; > 14.46 , (18)
y2’_{ 0 ify; <1446 @ S

The threshold of 14.46 was chosen because it is equivalent to the median of the
variable y;.

We considered three setups. In the first setup the probability sample was drawn by
simple random sampling without replacement (SRSWOR) from the full popula-
tion; in the second setup the probability sample was drawn with stratified random
sampling by the auxiliar variable x;7 and considering an allocation by strata of 1/3
and 2/3; in the third setup, the probability sample was selected with Midzuno sam-
pling where the probabilities were proportional to a variable following a normal
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distribution with a mean parameter dependent on the value of the auxiliar variable
x7 and a standard deviation of 0.5.

The aim of the described selection mechanism was to create weights with large
variability. As a result, the mean propensity is 0.7050, with a standard deviation of
0.3792, and thus a coefficient of variation of 0.5379. The histogram of propensities
m,i,i € U, is provided in figure 1.

Frequency
150000 200000 250000
| ]

100000

50000
1

T T T T T 1
00 02 04 08 08 10

Probability of inclusion

Figure 1. Histogram of the population propensities.

5.2. The simulation procedure

The first simulation study evaluates the performance of some estimators for ¥ when
there is selection bias in the estimates. We focused on the proposed estimator discussed
in the paper, Yy, and we compared it with others estimators based on propensities. As
a reference estimator we have considered the naive estimator that weights the estimators
simply by their sizes yppp = X,—;yr + ,%fyv. We also evaluate the estimators Yppg; (7),
Yrpre (8) and y-pgs (9) that do not use calibration.

We considered the XGBoost (Chen and Guestrin, 2016) algorithm among several
machine learning approaches for estimating the propensities in all estimators. This al-
gorithm builds decision trees ensembles that optimize an objective function via gradient
tree boosting (Friedman, 2001). Literature shows that PSA with gradient boosting ma-
chines provides better results than other machine learning approaches (Lee, Lessler and
Stuart, 2010, 2011; McCaffrey, Ridgeway and Morral, 2004, 2013; Ferri-Garcia and
Rueda, 2020; Rueda et al., 2022). The method depends on several hyperparameters for
a proper functioning and in order to avoid overfitting. We have considered the following
hyperparameters: the number of trees forming the ensemble (50, 100 or 150), the weight
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shrinkage applied after each boosting step (0.3 or 0.4), the maximum number of splits
that each tree can contain (1, 2 or 3), the proportion of variables used in each step (0.6
or 0.8) and the proportion of data used in each step (0.5, 0.75 or 1).

For each setup we select 500 probability samples of size n, = 250 and 500 non-
probability samples of sizes n,, = 500; 1000;2000. We compute the Monte Carlo relative
bias of the estimators:

L& |3, 7|
RB| = — ——1.100, 19
RB| Bb; = (19)

and the Monte Carlo root mean square relative error (RMSRE):

1 & (5,-7\°
RMSRE = | = Y (== -100. (20)
BA\ Y

where B is the number of iterations, and y,, is an estimate of Y, by the method under
study, computed for the b-th sample.

We also examine the behaviour of variance estimators. We consider the jackknife
method used in Wang et al. (2020) to account for all sources of variability. The perfor-
mance of a variance estimator along with the point estimator y; is assessed by the length
of the intervals obtained at 95% confidence level and their real coverage.

Variance estimators for yxy, is also calculated based on bootstrap methods. We have
obtained similar results for RB and RMSRE for the proposed estimator y-, and we
observed that the behaviour with respect to the other estimators is barely influenced
by the variance estimation method used. In the work only the results of the jackkniffe
method are shown.

The simulation study has been carried out using the statistical software R, and for
its implementation we have needed the use of specific packages of the area, such as
NonProbEst (Castro, Ferri and Rueda, 2020), KWML (Kern et al., 2021), sampling (Tillé
and Matei, 2021) and caret (Kuhn et al., 2022).

5.3. Results

Tables 1 and 2 contain the simulation results for y; and y, respectively for the three setups
considering different sample sizes. In all setups, as expected, the proposed estimator
with gradient boosting and kernel weighting (y-,) provides lower values of both |RB|
and RMSRE. The second best estimator is y-pg4, Which obtains results similar to the
first and with the rest of the estimators we obtain higher values of the |[RB| and RMSRE.
It is also observed that the behaviour pattern in terms of reduction |[RB| and RMSRE is
similar in the three sample designs considered for the probabilistic sample.



Table 1. Monte Carlo bias and root mean square relative error. Variable yy.
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1y = 250, 1, = 500

n, = 250,n, = 1000

n, =250,n, = 2000

[IRB] RMSRE |RB] RMSRE RB| RMSRE
Simple random sampling without replacement

Yrep 4772 4.847 4.732 4.795 4.801 4.872

Yrpr1  3-081 3.231 2.736 2.895 2.770 2.952

YrprR2 3.246 3.389 2.888 3.045 2.907 3.088

Yepsa 1251 1.554 1.197 1.512 1.341 1.663

Yeo 1.173 1.457 1.232 1.559 1.213 1.576
Stratified sampling

Yrer  4.800 4.880 4.864 4.942 4.730 4.788

Yror1 2998 3.190 2913 3.114 2.752 2.910

Yrpr2 3.651 3.788 3.601 3.746 3.435 3.546

Yepsa 1448 1.798 1.595 2.003 1.326 1.665

Yoo 1224 1.521 1.322 1.671 1.162 1.431
Midzuno sampling

Yrer 4771 4.845 4.766 4.827 4.735 4.792

Yrpr1  3-100 3.257 2.801 2.947 2.766 2912

Yrpro 3-381 3.520 3.122 3.250 3.069 3.198

Yepsa 1219 1.526 1.261 1.554 1.2390 1.573

Yco 1.010 1.393 1.141 1.412 1.124 1.425

Table 2. Monte Carlo bias and root mean square relative error. Variable y;.

1, = 250, 1, = 500

n, = 250,n, = 1000

1y = 250, 1, = 2000

|RB| RMSRE |RB| RMSRE RB| RMSRE
Simple random sampling without replacement
Yrer 16229 16.653  16.199 16.547 16.396 16.775
Yepri  10.025  10.769 9.130 9.809 9.188 9.971
Yrprz 10.650  11.367 9.600 10.281 9.605 10.398
Yepsa  J.188 6.406 5.136 6.400 5.759 7.176
Yeo 4.538 5.665 4.681 5.920 5.343 6.642
Stratified sampling
Yrer 16317  16.738  16.703 17.133 16.222 16.537
Yepr1 11.010  11.734  11.012 11.772 10.518 11.068
Yepra 12.819 13412 12.821 13.447 12.326 12.785
Yepsa  5.647 7.110 5.866 7.613 5.126 6.408
Yeo 5.119 6.444 5.198 6.704 4.612 5.684
Midzuno sampling
Yrer 16421 16.829  16.248 16.581 16.690 17.030
Yrpri 10.738  11.437 9.866 10.512 10.182 10.824
Yrpry 11.634  12.271 10.771 11.382 11.020 11.632
Yepsa  .246 6.652 5.052 6.206 5.632 7.004
Yeo 4.706 5.903 4.490 5.583 4.965 6.163

109
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Table 3. Confidence invervals’ real coverage and length. Variable y.

n, =250,n, =500 n, =250,n, =1000 n,=250,n, = 2000

Coverage Length Coverage Length Coverage Length

Simple random sampling without replacement

Yeer 0000 0481  0.000 0453 0000 0438
Yeori 0108 0517 0168 0492  0.164 0475
Yepre 0088 0522 0146 0505  0.146  0.490
Yepsa 0956 0853 0962 0854 0918  0.855

Yo 0962 0811 0960 0807 0928  0.781

Stratified sampling

Yeer 0002 0503 0.002 0477 0000 0463
Yepri 0190 0552 0178 0525  0.178 0509
Yepre 0054 0533 0052 0507 0030 0494
Yopsa 0944 0939 0898 0948 0954  0.948

Yo 0958 0844 0906 0822 0952  0.788

Midzuno sampling

Seer 0000 0488  0.000 0462  0.000 0445
Sepri 0124 0529 0146 0505  0.140  0.487
Sepre 0090 0528 0090 0509  0.094 0493
Yepsa 0958  0.886 0962  0.887 0956  0.886

Yoo 0952 0820 0964  0.808 0950  0.769

Table 4. Confidence invervals’ real coverage and length. Variable y,.

n, =250,n, =500 n,=250,n,=1000 n,=250,n, =2000

Coverage Length Coverage Length Coverage Length

Simple random sampling without replacement

Yeer 0008 0076  0.006 0070 0002  0.066
Yepri 0276 0077 0286 0070 0236  0.066
Yepra 0242 0077 0252 0071 0232 0.068
Yepsa 0968  0.130 0954  0.130 0930  0.131

Yoo 0950  0.118 0954  0.119 0904  0.116

Stratified sampling

Seer 0018 0080 0002 0074 0002  0.071
Sepri 0198 0079 0174 0072 0.32  0.069
Swpre  0.108 0078 0084 0071 0052  0.068
Yepsa 0944 0139 0924 0140 0976  0.140

Yo 0932 0126 0916 0121 0944  0.114

Midzuno sampling

Seer 0010 0077 0002 0071 0002  0.068
Sepri 0232 0077 0232 0071 0162  0.067
Sepre 0168 0078 0178 0072  0.126  0.068
Sepsa 0950 0133 0988  0.134 0958  0.134

Yo 0950 0122 0960 0118 0924  0.115
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Table 5. Monte Carlo bias and root mean square relative error of estimators changing the ML
method. Variable y.

n, =250,n, =500 n,=250,n,=1000 n, =250,n, =2000
[IRB| RMSRE |RB| RMSRE |RB| RMSRE
Simple random sampling without replacement
Yoo 1.156 1.406 1.162 1.428 1.260 1.570
Yco-nner 1.165 1.422 1.243 1.521 1.317 1.676
Yco-x 1.165 1.418 1.165 1.438 1.270 1.610
Ycor 1.197 1.468 1.279 1.568 1.339 1.695
Stratified sampling
Yeo 1.250 1.547 1.261 1.595 1.257 1.578
Yco-nner 1.389 1.713 1.379 1.773 1.474 1.829
Yeo-x 1234 1.527 1.250 1.582 1.240 1.550
Yco_r 1.467 1.814 1.477 1.891 1.557 1.923
Midzuno sampling
Yeo 1.254 1.567 1.191 1.478 1.307 1.615
Yco-nver 1331 1.665 1.277 1.605 1.490 1.884
Yeox 1272 1.592 1.203 1.495 1.337 1.658
Ycor 1.382 1.732 1.313 1.650 1.529 1.929

Table 6. Monte Carlo bias and root mean square relative error of estimators changing the ML
method. Variable y,.

n, =250,n, =500 n,=250,n,=1000 n, =250,n, = 2000
[RB] RMSRE |RB| RMSRE  |RB| RMSRE
Simple random sampling without replacement
Yeo 5.144 6.264 4.932 6.105 5.115 6.378
Yco-nver 5510 6.760 5.315 6.554 5.618 6.840
Yco-x 5.107 6.278 5.023 6.240 5.057 6.334
Yco—tr  5.739 7.011 5.558 6.903 5.842 7.101
Stratified sampling
Yoo 5.045 6.334 5.151 6.566 5.200 6.455
Yco-nner 5.449 6.848 5.870 7.472 6.058 7.461
Yco-x 4.967 6.312 5.240 6.716 5.553 6.837
Yco-r 5.593 7.028 5.939 7.508 6.197 7.615
Midzuno sampling
Yoo 4.781 5.868 4.9700 6.309 5.137 6.327
Yco_nner 5290 6.467 5.683 6.972 5.432 6.698
Yeo-x 4922 6.078 5.175 6.454 5.086 6.292
Yco_tr 5.520 6.717 5.807 7.124 5.592 6.916

Tables 3 and 4 show the real coverages and lengths of the corresponding 95% confi-
dence intervals. The coverage of intervals based on estimators Yz r, Yrpr1 and Yrpro are
very low, as expected, due to the bias in the estimates. On the contrary, the proposed es-
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Table 7. Confidence invervals’ real coverage and length changing the ML method. Variable y.

n, =250,n, =500 n,=250,n, =1000 n, =250,n, =2000
Coverage Length Coverage Length Coverage Length

Simple random sampling without replacement

Yco 0.974 0.812 0.948 0.805 0.924 0.780

Yco-NNET 0.970 0.830 0.956 0.839 0.918 0.858

Yco-k 0.970 0.823 0.960 0.820 0.936 0.821

Yco-Lr 0.970 0.854 0.956 0.867 0.916 0.876
Stratified sampling

Yco 0.946 0.845 0.930 0.820 0.916 0.784

Yco-NNET 0.926 0.905 0.932 0.915 0.926 0.929

Yco-k 0.954 0.854 0.938 0.849 0.936 0.849

Yco-1r 0.918 0.936 0.924 0.951 0.920 0.963
Midzuno sampling

Yco 0914 0.823 0.952 0.804 0.918 0.770

Yco-NNET 0.922 0.860 0.940 0.875 0.892 0.882

Yco-x 0.930 0.835 0.952 0.827 0.912 0.829

Yco-Lr 0918 0.893 0.950 0.901 0.908 0911

timator y-, and y-pgs have good performance, having the intervals a real coverage close
to the nominal coverage. With respect to the length of the intervals, as we expected, the
Yco estimator is the one with the shortest length for all types of sampling considered,
sample sizes and type of variable. The KW is intended to reduce variance and indeed it
succeeds for these scenarios and variables.

Table 8. Confidence intervals’ real coverage and length changing the ML method. Variable y,.

n, =250,n, =500 n,=250,n, =1000 n, =250,n, =2000
Coverage Length Coverage Length Coverage Length

Simple random sampling without replacement

Yco 0.940 0.118 0.938 0.120 0.926 0.119

Yco-NNET 0.906 0.124 0.926 0.125 0.900 0.126

Yco-k 0.954 0.120 0.944 0.120 0.938 0.120

Yco-Lr 0.920 0.128 0.916 0.130 0.900 0.130
Stratified sampling

Yco 0.950 0.127 0.928 0.120 0.898 0.116

Yco-NNET 0.944 0.138 0.930 0.139 0.942 0.139

Yco-x 0.960 0.128 0.952 0.127 0.950 0.127

Yco-Lr 0.938 0.140 0.920 0.140 0.946 0.143
Midzuno sampling

Yco 0.952 0.120 0.934 0.120 0.900 0.114

Yco-NNET 0.964 0.130 0914 0.130 0.958 0.133

Yco-x 0.962 0.123 0.944 0.121 0.958 0.122

Yco-Lr 0.958 0.134 0.930 0.135 0.952 0.137
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5.4. Influence of the machine learning method

In the previous simulation we used gradient boosting machine as a machine learning
method, but different methods can be used. In this case we are going to make a compar-
ison of the most used machine learning methods to see if the results are influenced by
them. Specifically, we are going to compare neural networks (NNET), K-nearest neigh-
bours (K) and logistic regression (LR) with respect to gradient boosting machine for
qualitative and quantitative variables y; and y, considering the three types of sampling
and for the different sample sizes. The results obtained in the comparative study can be
seen in the Tables 5, 6, 7 and 8.

When comparing the |[RB| and the RMSRE values for y; for all sample sizes (Table
5), we can see that in simple random sampling and Midzuno sampling the smallest val-
ues are found for Yy, in the case of stratified sampling, the smallest values are found in
Yco_x. For y; (Table 6) the results obtained for the gradient boosting machine and K-
nearest neighbours method are similar if we compare the |RB| and the RMSRE values.
When looking at the Tables 7 and 8 for y; it can be observed that the greatest coverage
(0.91-0.97) obtained is given in the case of the gradient boosting machine and K-nearest
neighbours methods. For y, the K-nearest neighbours method obtains the greatest cover-
age (0.93-0.96). With respect to the length of the confidence interval, gradient boosting
machine obtains the smallest values and logistic regression model obtains the largest.
The performance of the logistic regression was to be expected since the propensities do
not depend on all the covariates and there is an error in the propensity model specifica-
tion.

Table 9. Monte Carlo bias and root mean square relative error of estimators changing the kernel.
Variable y;.

n, =250,n, =500 n,=250,n,=1000 n, =250,n, =2000
[IRB| RMSRE |RB| RMSRE |RB| RMSRE
Simple random sampling without replacement
Yeo 1.160 1.448 1.144 1.437 1.261 1.578
Yeosy 1.164 1449  1.140 1.435 1.264 1.577
?C07TSN 1.161 1.451 1.145 1.437 1.261 1.577
Stratified sampling
Yoo 1.245 1.573 1.414 1.734 1.210 1.492
?CO_SN 1.250 1.579 1.389 1.703 1.206 1.492
?C07TSN 1.256 1.597 1.389 1.719 1.110 1.489
Midzuno sampling
Yeo 1.221 1.540 1.229 1.513 1.312 1.631
?cofszv 1.220 1.536 1.232 1.518 1.308 1.626
?cofrszv 1.230 1.548 1.231 1.518 1.320 1.632
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Table 10. Monte Carlo bias and root mean square relative error of estimators changing the
kernel. Variable y,.

n, =250,n, =500 n,=250,n,=1000 n, =250,n, = 2000
[IRB| RMSRE |RB| RMSRE |RB| RMSRE
Simple random sampling without replacement
Yoo 4.641 5.762 4.839 6.070 5.012 6.378
?CO_SN 4.567 5.679 4.832 6.088 5.002 6.335
?C07TSN 4.627 5.776 4.783 6.041 5.040 6.409
Stratified sampling
Yeo 5215 6.627 4.902 6.175 5.069 6.298
?co—szv 5.199 6.612 4.991 6.250 5.064 6.332
?C07TSN 5.271 6.631 4.988 6.230 5.099 6.377
Midzuno sampling
Yeo 4.657 5.873 5.122 6.274 4.966 6.211
?CO_SN 4.736 5.896 5.202 6.311 5.014 6.263
?C07TSN 4.617 5.870 5.220 6.375 4.993 6.256

Table 11. Confidence intervals’ real coverage and length changing the kernel. Variable y;.

n, =250,n, =500 n,=250,n,=1000 n,=250,n, =2000
Coverage Length Coverage Length Coverage Length
Simple random sampling without replacement
Yco 0.946 0.812 0.962 0.807 0.918 0.782
?CofsN 0.956 0.814 0.966 0.811 0.920 0.790
?CO_TSN 0.950 0.812 0.968 0.810 0.918 0.789
Stratified sampling
Yco 0.946 0.843 0.912 0.828 0.948 0.785
?C07SN 0.954 0.851 0.930 0.831 0.936 0.791
?CO_TSN 0.932 0.843 0.932 0.831 0.946 0.793
Midzuno sampling
Yco 0.930 0.821 0.958 0.807 0.912 0.777
?CofSN 0.942 0.825 0.960 0.813 0.910 0.782
?cofrm 0.932 0.821 0.958 0.810 0914 0.785

5.5. Influence of the kernel function

In the previous simulations we used the tringular distribution as kernel function in the
construction of KW pseudo-weights, but different distributions can be used. In this case
we are going to make a comparison of the distribution implemented in the R package
Boosted Kernel Weighting (Kern et al., 2021) to see if the results are influenced by them.
Specifically, we are going to compare triangular, standard normal (SN) and truncated
standard normal (TSN) for qualitative and quantitative variables y; and y, considering
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Table 12. Confidence intervals’ real coverage and length changing the kernel. Variable y,.
n, =250,n, =500 n,=250,n,=1000 n, =250,n, =2000
Coverage Length Coverage Length Coverage Length
Simple random sampling without replacement
Yco 0.944 0.118 0.940 0.118 0.932 0.117
?CO—SN 0.958 0.120 0.934 0.121 0.930 0.119
?CofTSN 0.956 0.119 0.936 0.121 0.932 0.119
Stratified sampling
Yco 0.924 0.125 0.954 0.121 0.922 0.114
?CO_SN 0.926 0.126 0.944 0.122 0.926 0.117
?cofrm 0.938 0.126 0.944 0.122 0.916 0.117
Midzuno sampling
Yco 0.952 0.121 0.942 0.119 0.920 0.117
?CO_SN 0.950 0.123 0.942 0.122 0.918 0.117
?cofrm 0.948 0.122 0.936 0.120 0.916 0.117

the three types of sampling and for the different sample sizes. The results obtained in
the comparative study can be seen in the Tables 9, 10, 11 and 12.

Table 13. Monte Carlo bias and root mean square relative error of estimators with coverage
bias. Variable y.

ny=250,n, =500 n, =250,n, = 1000 n, = 250,n, = 2000
IRB| RMSRE |RB| RMSRE |RB| RMSRE

Yeer 5541 5615 5581 5649 5554 5619
Yepri 3279 3427 3295 3421 3175  3.304
Yepra 3233 3409 3198 3358 2999  3.166
Yepsa 1267 1574 1213 1.535 1220 1.543
Yoo 1258 1563 1209 1529 1204 1520
yy(opt) 1195 148  1.125 1426  1.132 1446

Table 14. Monte Carlo bias and root mean square relative error of estimators with coverage
bias. Variable y;.

ne=250,n, =500 n, =250,n, = 1000 n, = 250,n, = 2000
RB| RMSRE |RB] RMSRE |RB| RMSRE

Yeer 19689 20085  19.689  20.085  19.689  20.085
Yeori 12210 12828 12210  12.828 12210  12.828
Vepre 12118 12794 12118 12794 12,118 12.794
Yepsa 5359 6.623 5359 6623 5359  6.623
Yoo 5375 6648 5375 6648 5375  6.648
Fup) 5258 6453 5258 6453 5258 6453
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The values of |[RB| and the RMSRE are similar for the kernel functions used, so we
can say that there is no influence of the kernel function in this study. Regarding coverage,
we see that in all cases it is quite good, moving around 0.91-0.96, obtaining the shortest
length of the interval in most cases in the y, estimator.

5.6. Results under coverage bias

In order to check the behaviour of the Hartley estimator y, (opt), proposed in section 4.2,
we have repeated the previous simulation but now we include a mechanism to reproduce
coverage bias in our simulation. This context is compared with the same estimators
considered in the first simulation.

The probability sample is selected by SRSWOR from the full population but the
non-probability sample is now selected from a frame U, created from the population U
containing only individuals whose variable x5 = 1 (related to target variables).

In Tables 13 and 14 values of |RB| and the RMSRE can be seen for each of the
considered estimators.

As expected, all the estimators considered now have greater bias than in the previous
simulation. We observe that the estimators y-ps4 and Yy, continue to be better than the
other PSA-based estimators in terms of |RB| and RMSRE reduction. As expected, the
estimator based on dual frames, y;(opt), is the one that produces estimates with less
|IRB|, and consequently is also able to reduce the RMSRE compared to its competitors.

6. Discussion

In the last decade, survey research has witnessed the surge of non-probability sampling
as a feasible alternative to probability sampling. In theory, the superiority of probability
sampling should be clear, as it has a theoretical basis in design-based inference allowing
for unbiased estimation of population parameters along with the calculation of exact
sampling error. However, they are very expensive and usually have small sizes. Non-
probability samples can offer some advantages in that sense, as they can be deployed
in many relatively inexpensive ways, but they lack an underlying mathematical theory
given their usual lack of design. This is troublesome with respect to achieving accuracy
and representativeness for estimates derived from such samples.

Given their potential, many efforts have been undertaken in recent years to combine
both probability and nonprobability samples to produce a single inference which may
be able to overcome the limitations of each method, resulting in a rich literature on
data integration in finite populations. Most of this literature is based on considering
a framework where the variables of interest have not been observed in the probability
sample. In this paper, we have considered the problem of observed study variables in
both the non-probability sample and the probability sample, in presence of auxiliary
information.

Since both samples contain the same variables, we propose a methodology to com-
bine two surveys based on probability and non-probability samples with the help of ma-
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chine learning algorithms, in order to obtain reliable estimations with small variance. We
have introduced a general class of estimators, based on the kernel weighting method, and
studied theoretically their bias properties. Using simulations we have also compared the
proposed estimators with other methods for integrating probability and non-probability
samples developed in the literature in different simulation setups, both in terms of |RB|
and RMSRE.

The simulation study indicates that [RB| and RMSRE of estimators can be reduced
when combining the probability and the non-probability sample using the KW method
proposed here in the case where there is a relationship between the variable of interest
and the participation probability. We also observed that the choice of the ML method
used for propensity predictions is very important and can influence the estimates ob-
tained. However, the kernel function in the construction of KW pseudo-weights does
not influence the estimates obtained. From our simulation study we also deduce that in
case the sample of volunteers has a coverage bias, it is appropriate to use an estimator
based on dual frames that allows this bias to be treated as well.

These methods can be implemented using freely available statistical packages such
as R. The R code used for the simulation study and the computation of the results are
available on request. However, the computational cost of resampling should be men-
tioned. Many of the proposed methods rely on variance estimation techniques which in-
volve resampling. For each iteration, a new model has to be trained and the calculations
have to be repeated, considerably slowing down the process. Therefore, they should be
avoided when execution time is of the essence and many variables are involved.

Some other papers (Elliot (2009), Dever (2018)) also combine the pseudo-weighted
nonprobability and probability samples first and estimate the finite population mean
from the combined sample. When pseudo-weighted samples are combined, the assigned
weights only depend on the sample sizes, the design weights and the estimated propen-
sities, which do not depend on the variable under study. Thus, the same weights are used
to make estimates for all variables, but for some variables the procedure may not be able
to eliminate voluntariness biases. On the contrary, the method that we propose depends
on each variable under study, and takes into account the voluntariness bias that may be
important for those variables that are correlated with the probability of participating in
the survey of volunteers, which is the case that interests us.

In our proposal we have considered non parametric methods to estimate the un-
derlying propensity model that reflect the self-selection process, which provides added
flexibility over logistic regression-based methods. Some recent works also use non-
parametric methods to make inferences for non-probability samples. Chen et al. (2022)
use kernel smoothing while Yang, Kim and Hwang (2021) use nearest neighbor for mass
imputation for the probability sample using the non-probability data as the training set.
Our method differs from these works fundamentally in two aspects: in our case the
variable under study is observed in the two samples, and we use the inverse propensity
weighting methodology while they use mass imputation.



118 Kernel Weighting for blending probability and non-probability survey samples

Our advice to practitioners is that the use of probability samples remains essential
to obtain reliable estimates based on an accepted theory such as sampling theory (Beau-
mont, 2020), but complementing the probability sample with a non-probability sample
can serve a means to reduce the errors in the estimates.

There is a lot of room for future research to improve estimation by mean integra-
tion: other similarity measures and other weighting adjustment methods such as weight
smoothing for multipurpose surveys (Ferri-Garcia et al., 2022) can be considered. In this
work only the estimation of means and totals has been considered, but the method can
be applied, with certain adjustments, to the case of other non-linear parameters such as
distribution functions or quantiles. In addition, new alternative methods for estimation
from a nonprobability sample continue to emerge. Liu and Valliant (2023) introduces
one method of weighting that assign a unit in the nonprobability sample the weight from
its matched case in the probability sample. These new methods can be used as an alter-
native to kernel weighting to build estimators similar to our proposal. These issues will
be future research topics.
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A. Appendix 1

Regularity conditions for the HT estimator
The first and second order probabilities verify:
lay NT2YN, . (mim; — mj)" = O(n~ %)

20) NT'YN (yi/mi =Y /n)* <M < oofor § >0and r ' +k 1 =1

Regularity conditions for the KW estimator:
The kernel function K (u), the bandwidth / and the sampling schemes verify:
2a) K(u), [ K(u)du =1, sup, |K(u)| < oo, y limy, o |u|[K(u)| =0

2b) h = h(n,), h — 0, but n,h — o as n, — oo and the distributions of the estimated
propensity scores in the probability and non-probability samples are interchangeables.
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