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An extension of the slash-elliptical distribution

Mario A. Rojas1, Heleno Bolfarine2 and Héctor W. Gómez3

Abstract

This paper introduces an extension of the slash-elliptical distribution. This new distribution is gen-

erated as the quotient between two independent random variables, one from the elliptical family

(numerator) and the other (denominator) a beta distribution. The resulting slash-elliptical distribu-

tion potentially has a larger kurtosis coefficient than the ordinary slash-elliptical distribution. We

investigate properties of this distribution such as moments and closed expressions for the density

function. Moreover, an extension is proposed for the location scale situation. Likelihood equations

are derived for this more general version. Results of a real data application reveal that the pro-

posed model performs well, so that it is a viable alternative to replace models with lesser kurtosis

flexibility. We also propose a multivariate extension.

MSC: 60E05.

Keywords: Slash distribution, elliptical distribution, kurtosis.

1. Introduction

A distribution closely related to the normal distribution is the slash distribution. This

distribution can be represented as the quotient between two independent random vari-

ables, a normal one (numerator) and the power of a uniform distribution (denominator).

To be more specific, we say that a random variable S follows a slash distribution if it can

be written as

S = Z/U
1
q , (1)
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where Z ∼ N(0,1) is independent of U ∼ U(0,1) and q > 0. For q = 1, the standard

(canonical) version follows and as q → ∞, the standard normal distribution follows. The

density function for the standard slash distribution is then given by

p(x) =





φ(0)−φ(x)
x2

x 6= 0

1

2
φ(0) x = 0

(2)

where φ denotes the density function of the standard normal distribution (see Johnson,

Kotz and Balakrishnan 1995). This distribution has thicker tails than the normal distri-

bution, that is, it has greater kurtosis. Properties of this distribution are studied in Rogers

and Tukey (1972) and Mosteller and Tukey (1977). Maximum likelihood estimation for

location and scale parameters is studied in Kafadar (1982). Wang and Genton (2006) de-

velop multivariate symmetric and asymmetric versions of the slash distribution. Gómez,

Quintana and Torres (2007) and Gómez and Venegas (2008) propose univariate and

multivariate extensions of the slash distribution by replacing the normal distribution by

the elliptical family of distributions. Asymmetric versions of this family are discussed

in the work of Arslan (2008). Arslan and Genc (2009) discuss a symmetric extension

of the multivariate slash distribution and Genc (2007) investigates a symmetric general-

ization of the slash distribution. Gómez, Olivares-Pacheco and Bolfarine (2009) use the

slash-elliptical family to extend the Birnbaum-Saunders (BS) distribution. Finally, Genc

(2013) introduces a skew extension of the slash distribution utilizing the beta-normal

distribution.

The present paper focuses on extending the slash-elliptical family of distributions

considered in Gómez et al. (2007) to a distribution with greater kurtosis, for which

purpose it is necessary to replace the uniform distribution by the beta distribution. This

gives a family of distributions, containing the slash-elliptical family, with much greater

flexibility.

The paper is organized as follows. In Section 2 we present the standard versions of

the slash distribution and some of its properties. In Section 3 we propose the extension

investigated in the paper, called the extended slash-elliptical family of distributions, and

study some of its properties. Section 4, which deals with a real data application, reveals

that the extended slash-elliptical distribution can be quite useful in fitting real data and

substantially improve less flexible models. Parameter estimation is dealt with by using

the maximum likelihood approach. Section 5 introduces a multivariate version of the

distribution, and Section 6 presents our main conclusions.
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2. Preliminaries

In this section we discuss some properties of the ordinary univariate and multivariate

slash distributions, for the sake of notation and comparisons.

We say that a random variable X follows an elliptical slash distribution with location

parameter µ and scale parameter σ if its density function is of the form

fX(x;µ,σ) =
1

σ
g

((
x−µ
σ

)2
)
,

for some nonnegative function g(u), u ≥ 0, such that
∫ ∞

0 u−1/2g(u)du = 1. We denote

X ∼ Eℓ(µ,σ;g).

In the multivariate setup, a p-dimensional random vector Y = (Y1, . . . ,Yp)
T follows

an elliptical distribution with location parameter vector µ and scale parameter matrix

Σ, which is positive definite, if its density function is given by

fY(y) =Σ
−1/2g(p)

(
(y−µ)T

Σ−1(y−µ)
)
, y ∈ Rp

where g(p) is the density generator function satisfying

∫ ∞

0
up−1g(p)(u2)du < ∞.

We use the notation Y ∼ Elp(µ,Σ;g(p)). If the moments of each element of the random

vector Y are finite, then it follows that E(Y) = µ and Var(Y) = αgΣ, where αg is a

positive constant, as seen for example, in Fang, Kotz and Ng (1990) and Arellano-Valle,

Bolfarine and Vilca-Labra (1996).

An extension of the slash model studied in Gómez et al. (2007), called the slash-

elliptical distribution, is defined as

X =
Z

U1/q
(3)

where Z ∼ Eℓ(0,1;g) and U ∼ U (0,1), Z and U are independent random variables

with q > 0. We use the notation X ∼ SEℓ(0,1,q;g). The density function for the random

variable X ∼ SEℓ(0,1,q;g) is given by

fX(x;0,1,q) =





q

2|x|q+1

∫ x2

0
t

q−1
2 g(t)dt if x 6= 0

q

1+q
g(0) if x = 0.

(4)
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A location-scale extension for the slash-elliptical distribution is given by X =σ Z

U1/q +µ,

so that its density function can be written as

fX(x;µ,σ,q) =
q

σ

∫ 1

0
uqg

(([
x−µ
σ

]
u

)2
)

du, (5)

−∞ < x < ∞, µ ∈ R , σ ∈ R+ and q > 0. We use the notation X ∼ SEℓ(µ,σ,q;g).

3. The extended slash-elliptical distribution and its properties

In this section we consider a stochastic representation, the density function (with some

graphical representations) and properties for the extended slash distribution.

3.1. Stochastic representation

The stochastic representation of the new distribution is given as

X =
W

T
(6)

where W ∼ Eℓ(0,1;g) and T ∼ Beta(α,β) are independent random variables with

α > 0, β > 0. We call the distribution of X the extended slash elliptical distribution,

and use the notation X ∼ ESEℓ(0,1,α,β ;g).

3.2. Density function

The following result shows that the density function of the random variable ESEℓ, can

be generated using the stochastic representation in (6).

Proposition 1 Let X ∼ ESEℓ(0,1,α,β ;g). Then, the density function of X is given by

fX(x) =





1

2B(α,β)|x|α+1

∫ x2

0
g(u)u

α−1
2

(
1− u1/2

|x|

)β−1

du, i f x 6= 0

α

α+β
g(0) , i f x = 0

(7)

with α> 0, β > 0, and g(·) density generator function.
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Proof. From the stochastic representation (6), we have

W ∼ Eℓ(0,1;g) ⇒ fW (w) = g(w2)

T ∼ Beta(α,β) ⇒ fT (t|α,β) =
1

B(α,β)
tα−1(1− t)β−1 , 0 ≤ t ≤ 1,

in which

B(α,β) =

∫ 1

0
tα−1(1− t)β−1 dt,

which can be written as

B(α,β) =
Γ(α)Γ(β)

Γ(α+β)
.

Moreover, using the stochastic representation in (6) and the Jacobian transformation

approach, it follows that:

X =
W

T

Y = T





⇒ W = XY

T = Y
⇒ J =

∣∣∣∣∣∣∣∣

∂W

∂X

∂W

∂Y

∂T

∂X

∂T

∂Y

∣∣∣∣∣∣∣∣
=

∣∣∣∣
y x

0 1

∣∣∣∣= y.

Hence,

fX ,Y (x,y) = |J| fW,T (xy,y)

fX ,Y (x,y) = y fW (xy) fT (y) ,−∞ < x < ∞ , 0 ≤ y ≤ 1.

Therefore,

fX(x) =
∫ 1

0
y fW (xy)

1

B(α,β)
yα−1(1− y)β−1 dy , −∞ < x < ∞

=
1

B(α,β)

∫ 1

0
fW (xy)yα(1− y)β−1 dy , −∞ < x < ∞,

with fW (w) = g(w2) as the density function of W . Hence,

fX(x) =
1

B(α,β)

∫ 1

0
g(x2y2)yα(1− y)β−1 dy , −∞ < x < ∞. (8)
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a) For x = 0,

fX(x) =
1

B(α,β)

∫ 1

0
g(0)yα(1− y)β−1 dy

= g(0)
B(α+1,β)

B(α,β)

∫ 1

0

1

B(α+1,β)
y(α+1)−1(1− y)β−1 dy

= g(0)
B(α+1,β)

B(α,β)

= g(0)
α

α+β
.

b) For x 6= 0,

fX(x) =
1

B(α,β)

∫ 1

0
g(x2y2)yα(1− y)β−1 dy.

Furthermore, let

u = x2y2 ⇒ y2 =
u

x2
⇒ y =

u1/2

|x|
du = 2x2ydy,

so that

fX(x) =
1

2x2B(α,β)

∫ x2

0
g(u)

(
u1/2

|x|

)α−1(
1− u1/2

|x|

)β−1

du

=
1

2B(α,β)|x|α+1

∫ x2

0
g(u)u

α−1
2

(
1− u1/2

|x|

)β−1

du.

Then,

fX(x) =





1

2B(α,β)|x|α+1

∫ x2

0
g(u)u

α−1
2

(
1− u1/2

|x|

)β−1

du i f x 6= 0

α

α+β
g(0) , i f x = 0,

concluding the proof. �
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3.3. Some special cases

We now consider some special important cases that can be obtained from the general

distribution of X ∼ ESEℓ(0,1,α,β ;g) presented previously.

Example 1 (Slash-elliptical) If X is distributed according to the extended-slash distri-

bution, then β = 1 (see Gómez et al., 2007). Hence, the pdf of X , can be shown to be

given by

fX(x) =





1

2B(α,1)|x|α+1

∫ x2

0
g(u)u

α−1
2 du, i f x 6= 0

α

α+1
g(0) , i f x = 0.

(9)

Example 2 (Extended-slash) If X is distributed according to the extended-slash (ES)

distribution, then g(u) = 1√
2π

e−u/2. Hence, the pdf of X can be shown to be given by

fX(x) =





1

2
√

2πB(α,β)|x|α+1

∫ x2

0
e−u/2u

α−1
2

(
1− u1/2

|x|

)β−1

du, i f x 6= 0

α

α+β
g(0) , i f x = 0

(10)

If β = 1, then one obtains the slash distribution (see Johnson et al., 1995)

Example 3 (Extended-slash-Student-t) If X is distributed according to the extended-

slash distribution, then g(u) =
Γ( 1+ν

2 )

Γ( ν2 )
√
πν
(1+ u

ν
)−

1+ν
2 . Hence, the pdf of X , is given by

fX(x) =





Γ( 1+ν
2 )

2Γ( ν2 )
√
πνB(α,β)|x|α+1

∫ x2

0
(1+

u

ν
)−

1+ν
2 u

α−1
2

(
1− u1/2

|x|

)β−1

du, i f x 6= 0

α

α+β
g(0) , i f x = 0.

(11)

If β = 1, then one obtains the slash-Student-t distribution (see Gómez et al. 2007).

In the following we illustrate graphically the behaviour of the density function of the

extended slash-elliptical distribution for α fixed and for the normal and Student-t (with

5 degrees of freedom) and density function generators, respectively.
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Figure 1: Density functions for the extended slash distributions with normal density generator (left) and

Student-t density generator (right), for α= 5 and several values of β .

3.4. Moments

Proposition 2 If X ∼ ESEℓ(0,1,α,β ;g), the r-th moment of X is given by

E[X r] =
Γ(α− r)Γ(α+β)

Γ(α− r+β)Γ(α)
ar/2, (12)

in which

ar/2 =

∫ ∞

−∞
wrg(w2)dw. (13)

Proof. From the stochastic representation, X = W
T

, in which W ∼ Eℓ(0,1;g) and T ∼
Beta(α,β) are independent random variables, we have

E[X r] = E

[(
W

T

)r]
= E[W r]E[T−r], (14)

from which both expectations are known. �

Corollary 1 Let X ∼ ESEℓ(0,1,α,β ;g). Then, it follows that

E(X) = 0, (15)

Var(X) =
(α+β−1)(α+β−2)

(α−1)(α−2)
a1 , for α> 2 . (16)
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3.5. The location-scale extension

A random variable X following a location scale extended slash-elliptical distribution,

which we denote by X ∼ ESEℓ(µ,σ,α,β ;g), can be stochastically represented as

X = σ
W

T
+µ (17)

where W ∼ Eℓ(0,1;g) and T ∼ Beta(α,β) are independent random variables, α > 0,

β > 0, µ ∈ R and σ > 0. Some results for the location-scale are considered next. We

start by presenting a general expression for the density function, which can be written

as:

fX(x) =
1

σB(α,β)

∫ 1

0
g

(([
x−µ
σ

]
t

)2
)

tα(1− t)β−1 dt, (18)

for −∞ < x < ∞.

Proposition 3 If X ∼ ESEℓ(µ,σ,α,β ;g) then, the r-th moment of X is given by

E[X r] =
n

∑
c=1

(
r

c

)
σcµr−c Γ(α− c)Γ(α+β)

Γ(α− c+β)Γ(α)
ac/2, (19)

in which

ac/2 =
∫ ∞

−∞
wcg(w2)dw, c = 1,2, . . . (20)

Proof. Notice that

E[X r] = E

[(
σ

W

T
+µ

)r]

= E

[
r

∑
c=0

(
r

c

)
(σ

W

T
)cµr−c

]

=
r

∑
c=0

(
r

c

)
σcµr−cE[W c]E[T−c].

Therefore,

E[X r] =
r

∑
c=0

(
r

c

)
σcµr−c Γ(α− c)Γ(α+β)

Γ(α− c+β)Γ(α)
ac/2
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in which

ac/2 =

∫ ∞

−∞
wcg(w2)dw, c = 1,2, . . .

�

Corollary 2 Let X ∼ ESEℓ(0,1,α,β ;g), then the kurtosis coefficient (γ2) is given by:

γ2 =
E
[
(X −E(X))4

]

(Var(X))2
=

(α−1)(α−2)(α+β−3)(α+β−4)

(α−3)(α−4)(α+β−1)(α+β−2)

a2

a2
1

, α> 4. (21)

The kurtosis coefficient depends on the parameters α and β and, moreover, on a1

and a2. Tables 1 and 2 reveal that the values for the kurtosis are greater for the Student-t

than for the normal distribution. Note also that for fixed β and α decreasing, the kurtosis

coefficient increases, that is, the distance from the normal model gets more pronounced.

Table 1: Kurtosis coefficients for the extended slash-elliptical for β = 1 and α> 4 for normal and Student-t

generators.

Normal Student-t

a1 = 1, a2 = 3 a1 =
v

v−2
, a2 =

3v2

(v−4)(v−2)

α γ2 α v = 5 v = 8 v = 20 v = 100

5 5.4 5 16.2 8.1 6.075 5.5125

6 4.0 6 12 5.6 4.4999 4.0833

7 3.5714 7 10.7143 5.3571 4.0178 3.6458

8 3.375 8 10.125 5.0625 3.7968 3.4453

9 3.2627 9 9.8 4.9 3.675 3.3347

10 3.2 10 9.6 4.8 3.6 3.2667

Table 2: Kurtosis coefficients for the extended slash-elliptical for β = 3 and α> 4 for normal and Student-t

generators.

Normal Student-t

a1 = 1, a2 = 3 a1 =
v

v−2
, a2 =

3v2

(v−4)(v−2)

α γ2 α v = 5 v = 8 v = 20 v = 100

5 8.5714 5 25.7143 12.8571 9.6428 8.75

6 5.3571 6 16.0714 8.0357 6.0268 5.4687

7 4.3749 7 13.125 6.5624 4.9218 4.4661

8 3.92 8 11.76 5.88 4.41 4.0017

9 3.6654 9 10.9963 5.498 4.1236 3.7418

10 3.5064 10 10.5195 5.2597 3.9448 3.5795
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3.6. Likelihood function

Consider a random sample of size n, X1, . . . ,Xn, from the distribution ESEℓ(µ,σ,α,β ;g).

Then the log-likelihood function for θ = (µ,σ,α,β)T can be expressed as

ℓ(θ ;x) =−n log(σ)−n logB(α,β)+
n

∑
i=1

log(k(xi,θ )) (22)

where k(xi,θ ) =
∫ 1

0 g
(([

xi−µ
σ

]
t
)2
)

tα(1− t)β−1 dt.

After differentiating the log-likelihood function, the likelihood equations are given

by

∂ℓ(θ ;x)

∂µ
=

n

∑
i=1

1

k(xi,θ )
k1(xi,θ ) = 0, (23)

∂ℓ(θ ;x)

∂σ
=− n

σ
+

n

∑
i=1

1

k(xi,θ )
k2(xi,θ ) = 0, (24)

∂ℓ(θ ;x)

∂α
=−n{ψ(α)−ψ(α+β)}+

n

∑
i=1

1

k(xi,θ )
k3(xi,θ ) = 0, (25)

∂ℓ(θ ;x)

∂β
=−n{ψ(β)−ψ(α+β)}+

n

∑
i=1

1

k(xi,θ )
k4(xi,θ ) = 0. (26)

where

k1(xi,θ ) =

∫ 1

0
− 2

σ

(
xi −µ
σ

)
t2g′

(([
xi −µ
σ

]
t

)2
)

tα(1− t)β−1 dt,

k2(xi,θ ) =
∫ 1

0
− 2

σ

(
xi −µ
σ

)2

t2g′
(([

xi −µ
σ

]
t

)2
)

tα(1− t)β−1 dt,

k3(xi,θ ) =

∫ 1

0
g

(([
xi −µ
σ

]
t

)2
)

log(t) tα(1− t)β−1 dt,

k4(xi,θ ) =

∫ 1

0
g

(([
xi −µ
σ

]
t

)2
)

log(1− t) tα(1− t)β−1 dt.

and ψ(z) = Γ′(z)
Γ(z) is the digamma function. Maximum likelihood estimators (MLEs) are

obtained by maximizing the above equations. No analytical solution is available for the

above equations, so that iterative procedures are required.
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3.7. Simulation study

As described next, a simple algorithm can be formulated to generate random deviates

from the ES distribution.

(i) Simulate W ∼ N(0,1)

(ii) Simulate T ∼ Beta(α,β)

(iii) Compute X = σW
T
+µ

Table 3 shows results of simulations studies, illustrating the behaviour of the MLEs

for 5000 generated samples of sizes n = 50, 100, 150 and 200 from distribution

ES(µ,σ,α,β). For each generated sample, MLEs were computed numerically using

a Newton-Raphson procedure. Means and standard deviations (SD) are reported. Note

that in general, as sample size increases, estimates get close to the parameter values and

the empirical standard deviation (SD) gets small, as expected. Therefore, large sample

properties of the maximum likelihood estimates seem to hold for moderate sample sizes.

Table 3: Empirical means and SD for the MLE estimators of µ, σ, α and β .

n = 50

µ σ α β µ̂ (SD) σ̂ (SD) α̂ (SD) β̂ (SD)

0 1 1 2 0.2374 (0.5218) 1.0090 (0.2029) 1.2248 (0.3946) 2.8790 (1.4356)

0 1 1 5 0.4503 (0.9686) 1.0404 (0.1904) 1.1204 (0.3333) 6.3611 (3.2877)

2 10 1 1 3.1886 (3.1744) 10.5595 (1.6844) 1.3382 (0.4474) 1.6140 (0.8279)

n = 100

µ σ α β µ̂ (SD) σ̂ (SD) α̂ (SD) β̂ (SD)

0 1 1 2 0.0374 (0.3259) 1.1333 (0.1613) 1.1930 (0.2213) 2.1900 (0.7484)

0 1 1 5 0.2426 (0.6733) 1.0378 (0.1297) 1.0706 (0.1768) 5.4931 (1.6113)

2 10 1 1 2.1469 (2.4254) 10.1862 (1.2163) 1.0567 (0.2685) 1.1124 (0.4572)

n = 150

µ σ α β µ̂ (SD) σ̂ (SD) α̂ (SD) β̂ (SD)

0 1 1 2 0.0234 (0.2742) 1.0393 (0.1090) 1.0441 (0.1753) 2.1387 (0.5938)

0 1 1 5 0.2338 (0.5569) 1.1015 (0.1158) 1.0675 (0.1611) 5.4171 (1.3794)

2 10 1 1 2.0511 (1.6831) 10.0914 (1.0147) 1.0494 (0.1911) 1.0735 (0.3131)

n = 200

µ σ α β µ̂ (SD) σ̂ (SD) α̂ (SD) β̂ (SD)

0 1 1 2 0.0023 (0.2376) 1.0366 (0.0946) 1.0389 (0.1433) 2.0983 (0.4803)

0 1 1 5 0.2307 (0.4547) 0.9951 (0.0980) 1.0267 (0.1427) 5.0110 (1.1707)

2 10 1 1 1.9983 (1.4606) 9.9764 (0.8570) 1.0262 (0.1583) 1.0382 (0.2585)
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4. Numerical illustration

In the following, we present a real data application using the likelihood approach

developed in the previous section. Since a numerical iterative approach is required

to achieve the MLE for the ESEℓ, we used the function optim available in the R

system. The specific method is the L-BFGS-B developed by Byrd et al. (1995) which

allows “box constraint”, that is, each variable can be given a lower and/or upper bound.

This uses a limited-memory modification of the quasi-Newton method. Large sample

variance estimates can be computed by inverting the Hessian matrix, which can also be

computed numerically using R.

The data set considered is from an entomological experiment with a total of 730 ants.

The ants were initially at the center of a box covered with sand and they moved toward a

visual stimulus located at an angle of 180◦ degrees from the center of the box rounded to

the nearest 10◦. The data set was initially analysed in Jander (1957), and further analysed

in Batschelet (1981), SenGupta and Pal (2001), Jones and Pewsey (2004) and Gómez et

al. (2007).

Table 4 reveals descriptive statistics indicating the data set presents greater kurtosis

than a data set typically coming from a normal distribution. Table 5 presents maximum

likelihood estimates and corresponding standard deviations for normal (N), slash (S)

and extended slash (ES) models. Using the Akaike information criterion (AIC) (see

Akaike, 1974), it can be noticed that the extended slash (ES) model presents the smallest

AIC. More strong evidence in favour the ES model is provided by the likelihood ratio

statistics. Figure 2 (left side) depicts the histogram and graphical representation for

estimated normal, slash and extended slash models for the ant data set. As revealed

by the plots, the best fit seems the one corresponding to the ES model. Figure 2 (right

side) shows the log-likelihood profile for parameter beta. Notice that the MLE is unique

for the ant data.

Table 4: Summary statistics for ant data set.

Mean Standard deviation Asymmetry Kurtosis

176.4384 62.64341 −0.2049024 4.575356

Table 5: Parameter estimates for normal, slash and extended slash distributions.

Parameter estimates N(SD) S(SD) ES(SD)

µ̂ 176.438 (2.316) 181.425 (1.268) 181.321 (0.094)

σ̂ 62.600 (1.638) 16.804 (1.246) 1.336 (0.108)

q̂ — 1.171 (0.085) —

α̂ — — 1.907 (0.094)

β̂ — — 40.084 (4.719)

Log-likelihood −4055.670 -3972.111 −3953.321

AIC 8115.339 7950.222 7914.642
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Figure 2: Models fitted by the maximum likelihood approach for the ant direction data set: ES (solid line),

S (dashed line) and N (dotted line) (left), the log-likelihood function profile of β for the ant data set (right).

5. Multivariate case

In this section, we introduce a multivariate extended slash-elliptical model and derive

some additional results concerning this extension.

The random vector Y ∈ Rp follows a multivariate extended slash-elliptical distribu-

tion with location parameter µ, scale parameter matrix Σ (positive definite) and shape

parameters α> 0 and β > 0, which we denote by Y ∼ ESElp(µ,Σ,α,β ;g(p)), if

Y =Σ1/2 X

U
+µ, (27)

where X ∼ Elp(0,Ip;g(p)) is independent of U ∼ Beta(α,β).

Proposition 4 Let Y ∼ ESElp(µ,Σ,α,β ;g(p)). Then, the density of Y is given by

h(y;µ,Σ,α,β) =





Σ−1/2

2B(α,β)γ(α+p)/2

∫ γ

0
t
α+p−2

2

(
1− t1/2

γ1/2

)β−1

g(p)(t)dt y 6= µ

B(α+ p,β)

B(α,β)
Σ−1/2 g(p)(0) y = µ

(28)

where γ= ‖Σ−1/2(y−µ)‖2 = (y−µ)TΣ−1(y−µ).
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Proof. Using the stochastic representation given in (27), the density function associated

with Y is given by

h(y;µ,Σ,α,β) =
∫ 1

0
uα+p−1 fp(uy;uµ,Σ)

1

B(α,β)
(1−u)β−1du

=
1

B(α,β)

∫ 1

0
uα+p−1(1−u)β−1

−1/2

Σ g(p)
(
γu2
)

du.

If y = µ then the result follows straightforwardly. On the other hand, if y 6= µ, after the

variable change t = (y−µ)TΣ−1(y−µ)u2, the result follows. �

Example 4 Considering g(p)(t) = 1

(2π)p/2 e−t/2 as the generator function for the multi-

variate normal model and then using (28), we obtain an extension of the multivariate

slash distribution introduced in Wang and Genton (2006).

Proposition 5 Moreover, if Y ∼ ESElp(µ,Σ,α,β ;g(p)), then we have that

E(Y) = µ and Var(Y) =
(α+β−1)(α+β−2)

(α−1)(α−2)
αgΣ , α> 2 (29)

6. Concluding remarks

This paper introduced an extension of the slash-elliptical distribution considered in

Gómez et al. (2007). The distribution is called the extended slash-elliptical distribution.

This new distribution is generated as the quotient between two independent random

variables, one of them from the elliptical family (numerator) and the other (denominator)

a beta distribution with parameters α and β . The resulting slash-elliptical distribution

potentially has a larger kurtosis coefficient than the slash-elliptical distribution. We

investigated properties of this distribution such as moments and closed expressions for

the density function. We also derived likelihood equations for the location-scale version,

placing emphasis on the special cases of the generalized slash-normal and generalized

slash-Student-t models. The results of a real data application reveal that the proposed

model can fit real data well, making it a viable alternative to replace models with lesser

kurtosis flexibility. We also proposed a multivariate extension.
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