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COMPUTER SIMULATION OF THE ATOMIC
BEHAVIOUR IN CONDENSED PHASES

*A. GIRO; **J.A. PADRO

Universitat Politécnica de Catalunya 1 Universitat de Barcelona

Molecular dynamics stmulation method for the study of condensed
phases of matter 1s described in this paper. Computer programs for
the simulation of atomic motion have been developed. Time-saving
techniques, like the “cellular method”, have been incorporated in or-
der to optimize the avarlable computer resources. We have applied
this method to the stmulation of Argon near its melting point. Differ-
ences in the structure, thermodynamic properties and time correlation
functions of solid and liquid phases are discussed.
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1. INTRODUCTION

The aim of the theory of molecular systems is to predict macroscopic prop-
erties on the basis of the interactions between the constituent particles. How-
ever, the prediction of the properties of a large ensemble of molecules inter-
acting through pair potentials is an unsolved problem: the N-body problem.
An alternative to analytical theories are computer experiments that generate
representative statistical samples of the system from wich macroscopic and
microscopic properties can be derived. Altough the theory used to generate
simulations is much simpler than the statistical mechanical theories, the re-
sults can be far more accurate and less assumptions go into the derivation of
the results.
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Computer simulations are often used to test the reliability of analytical the-
ories using simple potential models. But, when realistic potentials are consid-
ered, computer simulation can also play a role analogous to the experiment e.g.,
predicting the properties of real systems in situations where an experimental
study demands very costly resources. On the other hand, computer simulation
methods allow to consider ideal experiments with unreal particles, wich can be
very interesting in order to understand the basis of the behaviour of matter.
In the past computer simulations have been used to study simple systems but
during the last years these methods have also been applied to complex systems
e.g., mixtures [1] and solutions [2], ionic liquids [3] macromolecules [4] colloidal
systems [5], surfaces [6], chemical reactions [7], liquid crystals [8], etc.

There are two principal simulation methods: Monte Carlo (MC) and Molec-
ular Dynamics (MD). MC method generate a representative statistical equilib-
rium ensemble in wich each configuration occurs with its Boltzman probability,
for a given temperature and volume. All static equilibrium properties can be
obtained by computing that property for each configuration and averaging over
the ensemble. MD method, on the other hand, reproduce the trajectories of
all the particles in the system by solving the classical equations of motion.
If the trajectories are sufficiently long it also contain a representative ensem-
ble of equilibrium configurations, but, in addition, the trajectories will contain
dynamical information. The computer effort for a comparable statistical accu-
racy is of the same order the magnitude for MD and MC. However the former
permit to consider the dynamical properties, and we will concentrate on it in
this paper. In Section 2, we describe the MD method and we show the main
characteristics of our computer programs, wich have been used in the computer
simulation of solid and liquid Ar (details are given in Section 3). Section 4 and
5 are devoted to define the properties usually obtained from MD simulations
and to discuss their differences when solid and liquid phases are considered.
Finally, the perspectives for our future researches based on the MD simulation
method are outlined in Section 6.

2. DESCRIPTION OF MOLECULAR DYNAMICS METHOD

Molecular Dynamics (MD) allows the study of a great variety of properties
of matter [19], [10], [11] by evaluating the adequate average over microscopic
configurations. These configurations are obtained by integration of the classi-
cal equations of motion corresponding to a system of N particles interacting
through a truncated two-body potential. In order to solve this system of 6 ¥
differential equations an important power of numeric calculus is required. It
is so why the development of MD has followed the development of computer’s
capacity and speed.
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The most obvious difficulty of the MD method is the fact that the size of

the sample wich can be studied is extremely small (N < 1000).

In order

to minimize surface effects and to simulate more closely the properties of an
infinite system, periodic boundary conditions [12] are imposed. The particles
of interest lie in the central box and this basic unit is sorrounded on all sides
by periodically repeating replicas of itself. We allow the walls of the central
box to be completely permeable so that if a particle passes through a wall one

of its images enters through the opposite wall.

Fig. 1 includes a flow—chart diagram of our MD program. This shows clearly
that is easily turned due its composition with independents blocks. Differents
possibilities are available: change of initial conditions, interatomics potentials,
integration method of equation of motion,...
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FIGURA 1. Molecular Dynamics flow chart



In order to calculate the evolution of a set of N molecules we start from an
initial configuration (r,,v,). Computer time-saving forces to select an initial
configuration very near to equilibrium state. In this way, it is convenient to
begin with a face centered cubic structure slightly distorted at random [13]
and with a maxwelian velocity distribution. The condition ) ¥; = 0 must be

i
always imposed to prevent that the motion of the center of mass could disturb
the calculus of certain time—functions as the mean square displacement.

Once the density and the potential’s range are fixed we only must compute
the interaction of each molecule with those that are within its interaction range.
In order to shorten the computing time we have used the “cellular method”
[14], [15]. To this purpose we divide the main cube in a net of cubic cells (fig.
2). The calculation begins by stablishing a table in wich each cell is associated
with all those cells, images or not, located at smaller distance than the potential
range ;. For each time step a new table is constructed which associates to
each cell the molecules included in it. The interaction among particles are then
calculated computing only the distances between particles located in the same
cell or in the neighboring ones, according the tables previously constructed.

FIGURA 2. Cellular structure for a two-dimensional system
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Once given the pairwise interaction potential, the particle position 7;(t) and
the velocities ;(t) (¢ = 1,..., N) at time ¢, the main problem is to find the
corresponding values of the variables at time ¢ + At. Several integration algo-
rithms have been proposed to solve this problem [13]. In this work we use a
simple predictor—corrector method such as that used by Rahman [10] in this
simulation of liquid Argon. From #;(t), #;(t) and @;(t) an estimate of 7;(t + At)
is given by:

(1) ri(t + At) = Fi(t) + 5 (¢) At + @i(t).A£2/2

N
From r'";(t+ At) we obtain a new interaction force and we can know &} (t +

At). The corrected values of the positions and velocities at t + At are then
given by:

(2) U;(t + At) = 0;(t) + (@ (t + At) + @, (t)).At/2
(3) 7i(t + At) = 7i(t) + i (t) At + (Tt + At) + @(t)). At?/4.

3. APPLICATION: COMPUTER SIMULATION OF Ar

The Molecular Dynamics method described in the former section has been

applied to simulate a system of 500 particles of Ar interacting through a pair-
wise Lennard—Jones potential.

(4) V(r) = 4e((o/r)"* = (o/r)°)

with 0 = 3.44 and € = 1.653.1072!J. The intermolecular force (F = —dV/dr)
is cut at 7.65 A. In previous works [16], [17] it has been shown that this
intermolecular potential allows a good reproduction of the Ar properties for
both, liquid and solid phases.

Initially, we have assumed a face-centered cubic structure slightly distorted
at random. In the first time—steps the velocity of molecules has been controlled
by adjunsting them when the root-mean—square velocity differs more than 3%
from the desired value. After, the evolution is free and the system remains in
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its equilibrium state for 1000 time-steps (one time-step At = 107 '*s). The
temperatures and densities of the simulated systems are shown in Table 1.

TABLE 1: THERMODYNAMIC PROPERTIES

STATE SOLID LIQUID
V(m®.mol™1) 2.44 107° 3.09 1075
T(K) 77.5 83

P(bar) -10 —-360
U(KJ.mol"*K~! — 6.36 — 4.52
Cvo(J.mol"*K~! 21 22
D(m?.s71) 0 2.5 107°

4. STRUCTURE AND THERMODYNAMIC PROPERTIES

An image of the microscopic structure of the system is provided by the radial
distribution function,

(5) g(r) = n(r)/podnr2Ar

where n(r) is the number of atoms contained in a spherical shell of radii r and
r + Ar centered at a given molecule and p is the mean density.

Radial distribution functions consist of a pronounced first peak located
roughly on the pair potential minimum. In dense liquid systems the first peak
is followed by a number of subsidiary oscillations damping out to unity beyond
four or five atomic diameters (Figure 3). On the contrary, the solid phases show
a long range structure, with maximums located at distances corresponding to
a perfect face centered cubic structure.

70



VN
2~ l/ \\
li N
! \\
/ S T T Tl ——
/l =~ s e -
0 <L
2 -
0 L i
3.06 6.46 9.86

FIGURA 3. Radial distribution function.
The solid lines correspond to solid Ar.
The dashed line is for Ar liquid.

The Fourier transform of g(r) yields the structure factor S(k), which is di-
rectly related to diffraction experiments:

(6) S(K)=1+po /(;00[41rr2(g(1') — 1)(sin kr)/kr|dr

Figure 4 shows the differences between the solid-like and the liquid-like
S(K).
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FIGURA 4. Structure factor of Argon.
The solid lines correspond to solid Ar.
The dashed line is for Ar liquid.

From g¢(r) functions, the pressure and internal energy can be obtained
through the expressions [18]:

(M P =poKT — 27p? /(;OO g(r) (dV/dr)rdr
(8) U=3KT/2— 2mpo /0°° g(r)V (r)ridr

The values obtained from our simulations are shown in Table I. The error
introduced in the numerical integration of integral (7) is important, since its
final value is smaller than some of the terms wich are included during the
computation. In addition the two terms of (7) have the same order of magnitud
in the systems near melting point and therefore the accuracy of the values
obtained for P es quite small {~ +20 bar). The error associated with the
computation of U is smaller and we estimate it to be about 1%. The heat
capacity at constant volume may be calculated from the fluctuation on the
root mean square velocity following the equation [19]

72



(9) C, = NaoK5/(2/3 - N < (AT)? > /T?)

where <> means a time average over the squares of the deviations of temper-
ature from its mean value. N, is the Avodrago’s number, Kg the Boltzman’s
constant and N the number of particles.

5. TIME-CORRELATION FUNCTIONS

The dynamical evolution of particles isusually analysed through two time-
correlation functions, the velocity autocorrelation function.

(10) ¥(t) =< Zv, t))/N(v;(0))? >

and the mean square displacement function,

(11) ) >=< Z|r, ) — 7(0))?)/N >

where <> means that the time average is taken with several time origines.

Velocity autocorrelation function basically gives correlation between direc-
tions of vector velocity and hence between succesive directions of motion. The
backscattering (negative values of (t)) indicates high probability of large-
angle deflections [20] and can already be noticed in high density liquids near
the triple point, where the behaviour of molecules is intermediate between that
of a dilute gas and that of an anharmonic solid. Backscattering is obviously

much stronger in solids and therefore their v (t) reaches greater negative values
{(Figure 5).
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FIGURA 5. Velocity autocrrelation functions.
The solid lines correspond to solid Ar.
The dashed line is for Ar liquid.

It is logic that the mean square displacement of the molecules in a crystallyne
solid fluctuates with time around a constant value (Figure 6). On the contrary
in the liquid state a linear dependence or < r%(t) > with respect to time can
be observed.
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FIGURA 6. Mean Square displacements.
The solid lines correspond to solid Ar.

The dashed line is for Ar liquid.

The typical macroscopic property that usually is used to characterize the
dynamical behaviour of atoms is the self-diffusion coefficient D. It can also be
obtained from the Molecular Dynamics simulations following the expressions

[20],
(12) D=KpgT/m /oo Y(t)dt
(13) lim r?(t) = 6Dt

Atomic motion in solid phases do not show, obviously, any diffusion compo-
nent and we have not observed a significative value for D (see Table 1). The
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value of D for the liquid has been obtained from the arithmetic mean of the
values obtained from (12) and (13).

In Fig. 7 we plot some oscillatory movement of particles projected over a set
of coordinate axes parallel to the sides of the cube containing the system during
the solid simulations. The difference between these movements and harmonic
oscillations of ideal solids at temperatures lower than the ones considered in
this work is evident.
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FIGURA 7. Oscillatory movement of a particle over X,Y, Z
coordinate axes parallels to the sides of the cu-
be in simulations of solid phase

6. PERSPECTIVES

It has been shown along this work that the M D simulation technique is a
useful method for the analysis of the properties of matter from a microscopic
point of view. Moreover, the information provided by these kind of studies
is not only very helpful for the development of realistic physical models of
the atomic behaviour but also may be a valuable aid for the interpretation of
spectroscopic experiments [21].

We have extended the M D simulations discussed in this paper to the consid-
eration of more complex systems. So, we have already analysed the properties
of the isotopic liquid mixtures [22] and molten salts [23] (previously, it has
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been incorporated in our M D programs the Ewald’s method [24], which allows
the consideration of the long-ranged Coulomb interactions). Further—-more,
the use of the Langevin’s equation instead of the classical Newton’s equation
(Langevin dynamics method [25] , [26]), provides a time-saving method that is
being now used in computer simualtions of the ionic evolutions in electrolyte so-
lutions. We are planning to apply also this methodology to chemical reactions
and macromolecules in solution. On the other hand, we think that the M D
simulation method may be a useful tool for the study of the phase transitions
and interfacial systems and we hope that our research will be soon extended
towards these attractive subjects.

7. REFERENCES

1]
2]
(3]

4]

[6

7]
8]

9]
[10]

(11]

Balcells, M.; Giré, A.; Padré J. A. “Correlations in the Ar-Kr
Liquid Mixture”, Physica 135A, 414-425 (1986).

Heizinger, K. “Computer Simulations of Aqueous Electrolyte Solu-
tions”, Physica 131B, 196-216(1985).

March, N. H.; Tosi, M. P. “Coulomb Liquids”. Academic Press.
(1984).

Van Gunsteren, W. F.; Berendsen, H. J. C.; Rullmann, J. A. C.
“Stochastic Dynamics with Constraints. Brownian Dynamics of n-
alkanes”. Mol. Phys 44, 69-95 (1981)

Van Megen, W.; Snook, I “Brownian-Dynamics Simulations of Con-
centrated Charge—stabilized Dispersions”. J. Chem. Soc. Faraday
Trans. 2, 80, 383-394 (1984).

Croxton, C. A. “Statistichal Mechanics of the liquid Surface”. (Chap.
10), John Wiley & Sons, (1980).

Bergsma, J. P.; Hynes, J. T. “Dynamics of the A+BC Reaction in
Solution”, Chem. Phys. Letters 123, 3904-398 (1986).

Akesson, T.; Jonsson, B. “Brownian Dynamics Simulation of an Elec-
tric Double Layer. Applications to Lamellar Liquid Crystals”. J. Phys.
Chem 89, 2401-2405 (1985).

Alder, D. J.; Wainwright, T. E. “Studies in Molecular Dynamics
General Method”. J. Chem. Phys. 31, 459-466, (1959).

Rahman, A. “Correlations in the Motion of Atoms in Liquid Argon”.
Phys. Rev. A. 136. 405-411, (1964).

Verlet, L. “Computer Experiments on Classical Fluids”. Phys. Rev.
A 165, 98-103, (1967).

77



12]

[13]

[14]

(15]

[16]

7]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

(25]

Hansen, J. P.; MC Donald, I. R. M. “Theory of Simple Liquids”
(Chap. 3) Academic Press (1976).

Giré, A.; Gonzilez, J. M.; Padré, J. A.; Torra, V. “Molecular
Dynamics: Analysis of Initial Conditions and Integration Methods”.
An. Fis. A, 77, 57-62 (1981).

Giré, A.; Gonzdlez J. M.; Torra, V. “A time saving Method in
Molecular Dynamics”. An. Fis. 75, 154-158 (1979)

Giré, A.; Gonzalez, J. M.; Padré, J, A.; Torra, V. “The Structure
of the Liquid Lead at 670 K through Molecular Dynamics”. J. Chem.
Phys. 73, 2970-2972, (1980)

Giré, A.; Padré, J. A.; Torra, V. “Molecular Dynamics: Structure
and Thermodinamic Properties of Liquid Argon”. An. Fis. A, 78,
26-35, (1982).

Giré, A.; Padré, J. A. “A Molecular Dynamics Study of Solid Ar-
gon Near its Melting Point: Structure, Thermodynamic Properties and
Time-correlation Functions”, An. Fis. B, 9-17 (1985).

McQuarrie, D. A. “Statistical Mechanics” (Chap. 13), Harper & Row
(1976).

Rahman, A. “Molecular Dynamics Studies of Liquids” in “Interatomic
Potentials and Simulation of Lattice Defects” (P. C. Gehlen, J. R. Beeler,
R. L. Jafee, Eds.) 233-245, Plenum Press (1972).

Croxton, C. “Introduction to Liquid State Physics” (Chap. 10} John
Wiley & Sons, (1975).

Madden P. A. “Simulation of Properties of Spectroscopic Interest”.
Proc. Internat. School Enrico Fermi. “Molecular-Dynmics Simula-

tion of Statistical Mechanics Systems”, Part V, 371-397, North-Holland
(1986).

Padré, J.; Canales, M.; Sesé, G; Giré, A. “Time—correlation func-
tions in Isotopic Liquid Mixtures”, Physica (to be published) (1988).

Tullas, J. “Dinamica Molecular de sistemes amb interaccié coulom-
biana”. Tesina. Facultat de Fisica. Universitat de Barcelona (1986).

Trullas, J.; Giré, A. “Computer Simulation of Ionic Systems”. Proc.
Int. AMSE Conference: “Modeling and Simulation” (Sorrento), 3, 4,
67-68 (1986).

Padré, J. A.; Guardia, E.; Giré, A. “Langevin dynamics simulation
of L — J liquids. An analysis of solute concentration influence”. Mol.
Phys. 57, 4, 687-696 (1986).

78



[26] Guardia, E.; Giré, A.; Padré, J. A. “Nonaddittivity effects in gener-
alized Langevin dynamics simulation of interacting particles”. J. Chem.
Phys. 84, 4569-4573 (1986).

79






	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

