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A SIMPLIFIED TREATMENT OF THE
RESTRICTED ANALYSYS OF A
SLIGHTLY DISPROPORTIONATE

FACTORIAL EXPERIMENT
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This paper consider a procedure to obtatn effect estimators in the least
squares analysis of a slightly disproportionate factorial design when a
sample survey 1s made of the results of an eztensive experiment. Ez-
plicit formulae have been found for the restricted estimators and their
variances, when the constraints normally tmposed upon @ proportional
model are used. In addition, an approzimate analysis of the origi-
nal problem 13 used to perform that estimation, and an approzimate
analysis of variance table s proposed.
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1. INTRODUCTION

In many experimental investigations, the resulting data can be displayed
according to several factors in a complete “factorial” design. As a framework
for presentation, let us initially considerer a two-day design. The corresponding
fixed-effect linear model in usual notation is written:

(1) vyr=pt+a+Bi+aliy+e;, (=1,.,a;7=1,..b;r=1,..,n;)

where it is assumed that the errors e;;, are independently distributed as
N (0,02)
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Since the above model is overparameterized, a set of identiafiability con-
straints of the form:

Z:v;a; =0, Z:wjﬂj =0, z:w_,-aﬂ‘-j =0 (i'=1,...,a),
1) 3 2

E viafi; =0 (j=1,..,b)

must be imposed on the original factorial effects to ensure their estimability and
interpretation. Considerable interest as well as a fair amount of controversy has
centered on the choice of constraints to be used in unbalanced designs (/1/),
the form of the constraints depending on the weights assigned to the cells or
subclasses of the classification. The choice of the weights should be definable
before establishing the sampling scheme, irrespective on whether the sampling
is balanced or unbalanced (/2/, p. 97).

In this paper we will be concerned with investigation in which we make a
sample survey of the results of an “extensive” experiment (/5/, p. 119). In
this experimental context, the subclass numbers reflect the stratum sizes of the
corresponding experimetal population, and the use of observed frequencies as
weights is then interpretable.

It is a common practice in experimentation to call initially for a balanced de-
sign (/3/), althoug the completed experiment frequently has unequal subclass
numbers, the usual thing being to analize this data with “usual” constraints
(vi = wy = 1). If lack of balance is not great, this inappropriate analysis pro-
duces effect estimates which are not much different from the proper estimates
(/4/, p. 131).

It is also common in experimentation to call initially for a design with “pro-
portional” frequencies (/6/, p. 286), althoug the completed experiment has
disproportionate subclass numbers. It is expected, however, that the data
show slight deviations from proportionality. We assume such a slightly dispro-
portionate classification.

For such an extensive experiment with a slightly disproportionate classifi-
cation it would be meaningful to use constraints associated with the weights
v; = n; and w; = nj, normally imposed upon a proportional model (/7/),
which we call “marginal” constraints.

As a progress report on the wellknown “quasi balanced” design (previously
mentioned), our interest is centered on a “quasi-proportional” design. On the
other hand, for models with a large number of parameters, althoug the problem
of the estimation of the parameters may be solved numerically by a computer
(/8/,/9/), it is a particular advantage to find formulae for the estimators (/2/).

The purpose of this paper is then to examine for a disproportionate model
with marginal constraints on the following question: Might the restricted es-
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timators and their variances be expressed by explicit formulae? An accesory
question is: is it possible to simplify the above non-orthogonal analysis and to
obtain an approximate analysis of variance (anova) table?

2. EXACT RESTRICTED ESTIMATION

We now tackle the proposed estimation problem for a sufficiently generic
case, namely, the a X b X ¢ factorial model with the equation:

Yt'jkr =pu+o+ ﬂj + Y + a,Bij + avix + ﬂ"fjk + aﬂ'ﬁjk + €i5kr

(t=1.,a;7=1,..,b;k=1,.,¢; r=1,..,nik)

(2)

with the same assumption as in (1). For this three-factor case, the marginal
constraints we impose on the parameters are written:

Yonia; =0

Ynkw=0
x

Zn;,, a,B,-j =0 (]' =1,..

(3) Eni.. avixk=0 (k=1,...

Z: n.;. ﬂj =0
Ynjafi;=0 (i=1,..,a)

,a)

Ek:n..k Bk =0 (7=1,..,b)

Ynkave=0 (1=1,..
k

L =1,...
Ing B =0 (k=1 Xnkafrj= 0<1'~ ' "Z)
J k ’

J=1,..

1=1,..,a

‘ o . o 7=1,...,b
zj;n._,, afvijk = 0<k _ 1,...,c),E-n‘“ afvijk =0 <k = 1,,,,,(:)

The system of normal equations relative to a model with all the interactions,
such as (2), may be written:

Gijk. = A+ & + By + Ak + O‘A.B.'j + dyy + ﬁ")’jk + aBYijk
(t=1,.,a;5=1,..,b;k=1,...,¢)

(4)

where §;jx. is the mean of a generic subclass. The solution of this system
augmented with the above one (3) (with regard to the effect estimators) is
unique. To express that solution concisely, we introduce the following notation:
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(5) Sy = 1/n%(ni. njn i)

which implies that

~ ~

(6) ng =1/n(nin;), n =n;. , n¥=n

It is interesting to note that, for the disproportionate classification we are
considering nz-k # nije and ng; # ny;. Also, in terms of (5) and (6), we state
the following additional notation:

yz = l/nzzznik gij'k- ’ g,ﬁ = l/ni.. Zzn,‘gj‘k gt']'k.
i 7 k ' 7 k

Gk, = 1/n 22w Gijk. » Uigx, = Yigk.
k

where the means and marginal means of the original classification appear.

We are now in a position to state more formally the solution of above men-
tioned augmented normal equations.

Theorem 1. The restricted estimators for a disproportionate a X b X ¢ fac-
torial model with marginal constraints are expressed by the following explicit
formulae:

The variances of these estimators are:
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Var (i) = EET (w5) fr
Var (&) = oA ((1/m 1 mP ST ()
H/ T (n5e)” /n,-,,.k)
Var (865) = (/5 = e = 1/n s +1/n) 5 (n5) e
SCVLER VD v Y (- Ry
+(1/ns. - 1/n)2§;% (r)” i
HRE T () /n;,J-.,c)

Var (aﬁ’y,-jk)z o2 ((l/n;:j,c — 1/n§-. —-1/n, — l/nj,c +1/ni +1/n; +
+1/n g — 1/n)?
~ 2 ~
X (n‘_]k) [k + (l/n‘_] —1/n; —1/n;+
2
2 ~
+ 1/’ T (n5 ) Imign

kl
~ 2 ~ 2
+ (1/n;k ~1/ni. = 1/ny + l/n) > (n‘.—].,k) ik
7'
. 2 ~ 2
+ (1/77.3,c —1/n; —1/n x+ l/n) E (njj-k) Itk
2
2 o
(Ui = 1nf S5 (n5) e + (1 -
2 ’ o~ 2
S5 (i) i
2 o~ 2
+ (k= 1n) L X (n) frosmect
.‘I J'l
2
+ 1/n2 Z,: E kE (n§J~,k,) /n.-:]-:k/
Iy Jl ’

(=1,.,i—Li+1,. a5 =1,...,7— 1,5+
+1,.,0k =1, ., k-1k+1,..,¢)
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where the error variance is estimated by:

(10) &2 =ZZZZ(y;,'kr -g.-jk_)z/(n—axbx c)
t 35 k r

Proof. If we introduce (5) to (7) in (8), the resulting expressions for the
estimators satisfy (3) and (4) (as may be checked). On the other hand, formulae
(9) may be verified by including (7) in (8) and finding the variances of the
resulting expressions, taking into account the model assumptionm mentioned
below expression (1).

The estimation carried out in this Section is valid in the experimental context
described at the end os Section 1.

Remark. Because of the non-orthogonality of the original designal data, it is
not possible to find formulae for the statistics of the F-tests.

3. AN APPROXIMATE ANALYSIS
3.1. APPROXIMATE RESTRICTED ESTIMATION

Next, we propose an approximate analysis in which the cell means g,
are treated as thoug they were averages of n?]'.k observations, where n?;.k is
given in (5) in terms of the original data. We can imagine a hypothetical
classification associated to the original one that possesses (5) and (6) as its
corresponding frequencies and (7) as its means. Such a classification turns out
to be “proportional” (as may be verified).

The following is an analogous result to that stated in Section 2.

Theorem 2. Approximate estimators for a model with a slightly dispropor-
tionate classification are given by the proper formulae (8). The variances of
these estimators in this case are:
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(11)

Var(ji) =g%/n
Var(&;) =02/n%(n(n — n;.)?/n;. + n%(n—n; )/n) =0*(n—n;.)/nn;.
Var(afi;) = o?/n® ((n(n —(ni.. +n;)+ nﬁ)z/nﬁ) +(n—nz)(n—n)?/ni.
+(n—n; J(n—nii)/n; +(n—(n. +n) + n;‘;)/n)
Var(aige)= 02/n® (n(n = (ne. +m; 1) + (05 + 05 +n%) = nile) /nise
+(n—n_ ) (n —(ni. +n;)+ n?}_)z /n;‘:
Hnmng) (n (mi. + ) +n) /o
+(n—n;) (n —(nj +nux)+ "3-;;)2 /%%
+(n—(ng +n.i) +n5(n—ni)?/n.
+(n—(ni. + nx) +np(n—n;)?/n;
+n— (ni. +ng) +ng(n—nk)?/n

H(n— (ni. + g )+ (05 + 0 + 0% — i) /n)

where the error variance is estimated as in the exact analysis (10).

Proof. In fact, equations (8) are reminiscent of the weel-known formulae that
perform the estimation with marginal constraints in a model with a propor-
tional classification, such as the hipothetical one mentioned earlier. On the
other hand, if we replace in (9) the original frequencies nijx, nij.,..., bye their

associated ones n ;. , n;; , ..., We obtain (11).

3.2. APROXIMATE ANALYSIS OF VARIANCE TABLE

For a classification with slight deviations from balance, the usual constrained
analysis (v; = w; = 1) leads to an aproximate anova table, that dos not give
misleading results, provided the cell sample sizes are not too unequal (/10/, p.
124).

Next, as an extension of the just mentioned result, we propose another table
for a disproportionate classification in terms of (5) to (8).
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Table 1. Approximate anova table for a three-way
disporportionate factorial classifcation.

Source of Variation Degrees of Freedom Sum of Squares
A main effects a — 1 E n;. (&)?
B
B main effects b — 1 2N (8i))?
Fi
C main effects c — 1 Zk: n._x (4%)?
AB interactions (e — 1) - 1) Z E n;'j (aﬁﬂij)z
i
AC interactions (a — (c — 1) E Eki nox (i )?
BC interactions 6 — 1)(c — 1) E Zk: njzjk (ﬁaﬁj'k)z
3

ABC interactions (¢ — 1)(b ~ 1)(c — 1) XXX ng, (aBiji)?
' ik k

errors n —abe S Y (Wiskr — Tk )?
1 7 k r

The sums of squares in this Table do not add up exactly to the total sum
of squares, but the discrepancy is not great, provided the sample sizes are
only slightly disproportional. If so, the proposed aproximate anova table yields
reasonable approximations.
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