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AN EIGENVECTOR PATTERN ARISING
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Let A = (ai;) an nxn matriz defined by a;; = aj; =i,i=1,--- ,n.
This paper gives some elemeniary properties of A and other related
matrices. The eigensiructure of A is conjectured: given an eigenvector
v of A the remaining eigenvectors are obtained by permuting up to sign
the components of v. This problem arises in a distance based method
applied to non linear regression.
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1. INTRODUCTION

In regressing a dependent variable Y on several explanatory variables zy,...,
z, by using a distance-based model, as proposed by Cuadras (1989) and Cu-
adras and Arenas (1990), the diagonalization of a special patterned matrix
arises. This method seems to be useful for mixed explanatory variables and
can also be applied to perform a non-linear regression

(1) y,-:f(a:,-l,...,z,-,_,;a)+e,~ i=1,...,n,
where the explanatory variables are continuous and the square distance

df; = |ei — zjnl + -+ |zip — 2]

between two observations (z;1,...,Zip). (Zj1,...,Zjp) is adopted.
The metric scaling on the n x n distance matrix D = (d;;), where n is
the number of observations (see Mardia et al, 1979), provides several principal
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coordinates defining linear, quadratic, cubic ... dimensions, and the vector of
observations of Y is projected on them. This distance-based method has an
interesting advantage: it is not necessary to specify the non-linear function f.
In some applications f is unknown, so this approach could be useful.

As an illustration, table 1 reports the data observed in an experiment using
newborn turkeys, relating the average body weight to two sources A and B of
methionine as dietary supplement. The non-linear model considered is

(2) yi =01+ 0 [1 — exp(O3xiy + Oazi2)] +e;

where y; is the weight and z;; and z;5 are the dose of methionine from sources
A and B respectively (Weisberg, 1985, page 262). The left column in table 1
contains the observed data, the fourth column gives predictions from model (2)
and the right column gives the predictions obtained by using the distance-based
model mentioned above, without knowing the non-linear regression model.

TABLE I
Observed Predicted
A B Model(2) Distance-based model
Yi Ti1 Tiz o N
672 0.04 0 671 672.5
709 0.10 0 708.6 7075
729 0.16 0] 736.4 730.5
778 0.28 0 772 7774
797 0.44 0 795.7 797.2
680 0 0.04 678.5 679.5
721 0 0.10 721.4 722.5
750 0 0.16 751.4 748.5
790 0 0.28 785.3 790.6
799 0 0.44 804.2 798.8

The performance of this distance-based method has heen confirmed in other
examples. However, in studying the Euclidean coordinates related to distance
(1), the following matrix pattern is found

1 1 1 1
1 2 2 2
A=11 2 3 3
1 2 3 n




ie.,, A= (aij) is defined by

a,-jzaj;—_-i i:l,...,n.

The aim of this paper is to give some elementary properties of A and to
enunciate an interesting conjecture.

2. SOME PROPERTIES
It is obvious that

A=MM =N?

where
1 0 0
1 1 0
M = :
1 1 1
and
0 0 1
0 1 1
N=1. . Do
1 ... 1 1

Therefore A is positive definite matrix and both .4 and A have the same
eigenvectors.

Some properties of certain patterned matrices (7, which include M and A, are
given by Graybill (1983, pages 186-187). However “the characteristic equation
and roots of matrix C are difficult to evaluate in general” (page 206). Conse-
quently, the eigenvectors of C also seem to be difficult to obtain algebraically.

Instead of A, let us consider the matrix B obtained by permuting rows and
columns in A,

n n—1 ... 2 1

n—1 n—-1 ... 2 1

B= . : . ..
2 2 2 1

1 1 1 1

l.e.
bij=bji=n+1-—1i i=1,...,n.
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This special matrix appears as an example in Gregory and Karney (1969).
A and B are related by

B=APA

where P is the permutation matrix

0 0 ... 01
00 ... 10
P=1. . . .
1 6 ... 00
Thus A and B have the same eigenvalues. If w = (uy,... ,un)’ is an eigenvector

of A, Au = Au, then, since P? =1,

PAPPu = PAu = APu,

hence Pu = (y,,...,u1)" is an eigenvector of B with the same eigenvalue A.
Let vy = (v1,...,vn) , the eigenvector of B with the largest eigenvalue. It
is satisfied that

(3) vy > .. >, >0,
Proof

All components of v, are positive (Penrose’s theorem) and Bvy = wy =
(w1, ..., ,wp) satisfies

n

wj._lvj+l—_‘217j j:l,....?l—l,

i=1

hence wy > ... > wy, > 0. Since w; = Av; inequality (3) holds.
The eigenvalues of B are given by

1 2i—1 \17"
Ai:-i[l-cos(Q;ﬁ_l?r)] i=1,....,n,

(see Frank, 1958), but the eigenvectors, as far as we know, are not well known.
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3. THE CONJECTURE

To elucidate the structure of the eigenvectors of B, we firstly consider the
case n = 3. Then B = VAV', where

737 591 .328
V=159 -.328 -.737
328 —.737 .591

Let us denote the columns of V' by v;,vs,v3 and introduce the matrix

0 1 0
Q= 00 -1
-1 0 0

Note that:
a) V is a symmetric matrix.
b) The second and third columns of V are permutations up to sign of the first
one.
c)

va= Qu
va= —Quy = -—szl

)@=
where [ is the identity matrix.

Therefore the eigenstructure of B depends on v; and Q.

Generally, suppose that the B matrix has order n > 2. We say that an nxn
matrix ( is a signed-permutation matrix if each row and each column contains
either 1 or -1 and the remaining elements are zero. It is easily proved that Q
is non-singular,

QI - Q-l
"l=Q
and
Qn = Il

where I is the n x n identity matrix.
Conjecture
Let B = (b;j) the n x n matriz defined by
bij=bji=n+1-1 i=1,...,n,

and suppose n # 34+ 1. Let vy be the etgenvector with the largest eigenvalue
A1. Then there exists a signed-permutation matriz Q such that

viQuy =0
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and
vszk’lvl 2<k<n

are the remaining eigenvectors of B. It is even possible to write the spectral
decomposition

€)) B=VAV

in such a way that V is an orthogonal symmetric matriz whose columns are
standardized eigenvectors obtained from permutations up to signs of the com-
ponents of v;.

If n = 3+ 1 then V is also symmeiric and some columns are obtained
similarly, but other columns contain certain elements of vy and certain zeros.

As an example, for n = 6 we obtain

5 4 3 2 1
2 -1 -4 -6 -3
-1 -6 -2 3 5
-4 -2 ) 1 -6
-6 3 1 -5 4
-3 5 -6 4 =2

=R W R OT O

where we write ranks instead of numerical values.
Remarks

i) The spectral decomposition (4), where V' is a biorthogonal matrix, is also
found for a special pattern of correlation matrix with the structure of Latin
square (‘Tiit, 1984, 1986).

ii) A generalization is possible. Given a vector v and a signed-permutation
matrix Q such that ¥Q*v =0 (k=1,... ,n—1) and Q" = I, we may
consider the class C of n x n matrices such that C € C iff

n
C = Z#iQi—l,v,le—(i—d)

i=1

where pi1,..., 1, are real values. It is conjectured that both v and Q exists.
Note that B € C and the following property holds:

cec it QFcQtec

for any integer k (remember that Q' = Q~!).
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