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LOCAL PRINCIPAL COMPONENTS ANALYSIS

TOMAS ALUJA-BANET and RAMON NONELL-TORRENT

Facultat d’Informatica de Barcelona (UPC)

Principal Components Analysis deals mainly with the analysis of
large data sels with mullivariate structure in an observational con-
text for exploratory purposes. The factorial planes produced will show
the main oppositions between variables and individuals. However, we
may be interested in going further by controlling the effect of some
latent er third varieble which ezpresses some well-defined phenome-
non. We go through this by means of a graph among individuals,
following the same idea of instrumental variables as Rao, or partial
correlation analysis. We call such analysis Local Principal Compo-
nenls Analysis, which consists of defining a semi-meiric upon the
variables space. Finally, we illustrate this with an example.

Keywords: principal components analysis, local analysis, partial
analysis, semi-metric, singular value decomposition.

1. INTRODUCTION

Principal Components Analysis (PCA) looks for a few combinations which
can be used to summarize the data, whilst losing in the process as little informa-
tion as possible; the issued factorial plans reveals the most important features
of the data. Very often, such patterns show the effect of some well-known phe-
nomenocn, for example a North-South effect in geographical data, a trend effect
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in chronological data, or an income effect in sociological data. It could then be
interesting to analyze the data controlling for these phenomena, following the
same idea of instrumental variables as Rao [7], or partial correlation analysis.
We perform this, avoiding the strong hypotheses implied by the former analyses,
by defining a non-oriented graph which expresses a binary relation upon the
individuals. This graph can be defined upon some “a priori” relationship on
the individuals which we want to eliminate, such as a contiguity relation in
geographical data, similar incomes of households in a socio-economic survey, or
a trend effect in temporal data.

Local Principal Components Analysis (LPCA) consists of explaining the va-
riation upon the edges of the graph. Thus, the issued patterns of LPCA dis-
play the oppositions between related individuals by the graph; for example, if
the graph expresses a neighbouring relationship, then LPCA will show the op-
positions between neighbouring individuals, that is, the oppositions given the
location of individuals in the map.

Here we will present the rationale of LPCA starting from the generalized
PCA, and following the Caillez-Pages [2] schema; then we introduce the LPCA
as a transformation of the original raw data, and finally we will see that this
transformation is equivalent to defining a semi-metric upon the variables space.

2. PRINCIPAL COMPONENTS ANALYSIS

Let X be a data matriz of n observartions of p variables with z;; observation
of jth variable, j € J = {1,...,p}, on the ith individual, 1 € I = {1,...,n}.
Let M be the metric matrix in the euclidean individual-space R? and D the
diagonal metric matrix for R™ with weights p;(p; > 0,3 ;c;pi = 1) assigned
to individuals.

The following dual schema gives us the relations between the spaces consi-
dered:

RP 3_(_:_ RN*
| M 1D
X

Rp* _— 'Rn
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The Principal Components Analysis (PCA) of the triplet (X, M, D) will show
the main overall oppositions between variables and individuals. It can be presen-
ted as a method of finding the linear combination of variables with the greatest
variance, or the method of finding the linear combination with the maximum
correlation with the original variables, as a particular case of generalized cano-
nical analysis. It can also be presented as a method of finding a subspace which
maximizes the inter-points distances between individuals.

Let £, , denote the vector space of matrices with n rows and p columns. In
Ly p, the Hilbert Schmidt norm of X is defined as:

I Xllp.w = [Tr(X* DX M))?,

where T'r is the trace function.

When D = diag(py,i € I), then || X||} 3 = ¥ ;e pillzills is interpreted as
the inertia with respect to the origin (or to the barycentre if X is centered) of
the set of weighted individuals {(z;,p;),i € I}.

If X is rank r, the Singular Values Decomposition Theorem allows us to
decompose X as:

X = VAU,

with V!*DV = U*MU = I where I is the identity matrix of order r, V' and
U are (n,r) and (p,r) matrices, and A is the_ diagonal matrix if the so-called
singular values A,(A; > 0) ordered by decreasing values.

This decomposition is referred to as the singular values decomposition (s. v.d.)
of the triplet (X, M, D).

Let v, and u, be the sth columns of V and U respectively. The vectors
{vs,s = 1,...,7}, left singular vectors of the above decomposition, form an
orthonormal basis of the columns of X, and the vectors {u,,s =1,...,r} right
singular vectors, form an orthonormal basis of the rows of X.

Let Vi and Ui be the submatrices built with the & first columns of V and

U respectively, and let Ay be the diagonal matrix of the k first singular values
(k<)

The projection operator onto the subspace (Vi) generated by the columns of
Vi is denoted by Qi, and we know that Qi = Vi Vi D. In the variables-space,
Py = UrU}M is the projection operator onto the subspace (Uz) generated by
the columns of Uy.
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Let Qr be the projection operator onto a subspace T of the space (R", D);

similarly, let Py be the projection operator onto a subspace W of the subspace
(RP, M).

Then, X* = Vi AzU} can be expressed as Xk = XP! = Q: X, and we have:

(1) QT X113 ar < IX*Ip.ae
and
(2 X Pl ae < X5 D ae

for all k—dimensional subspaces T' and W of the variables space and of the
individuals space respectively. The upper bound

n
IX* 1B = Y A2
s=1

is attained for T'= (V%) and W = (U) respectively.

Expression 2 can be written as

3) S22 NXPY D ae = Y _pill Pw(ll3s

s=1 i€l

that is the inertia, with respect to the origin, of the projections of individuals
onto the subspace W. Then, the subspace (Ux) is an optimal choice to keep
the maximum inertia. Assuming that M is diagonal (M = diag(m;,j € J), and
that X is centered, expression 1 can be written as:

1Qr X5 = Y_mjvar (Qr()) <)X,
jeJ s=1

where z7 is the jth column of the matrix X. Now, the optimal choice for
explaining the variance of the variables is (V).

On the individuals side, u, is called the sth principal axis and we deduce
that Py(z;) = Zle Asvsits. The scalar A\, v,;, co-ordinate of the ith individual
on uy, is called sth principal co-ordinate of individual 4.

Analogously, on the variables side:

k
Qk(xj) = Z/\,u,,—v,.

s=1
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We know that there exist the follbwing “transition formulae” with the left
and right singular values:

U X'DVA~!
V = XMUA™L

Thus, the coordinate of individuals can be written as ¥ = X MU. Likewise the
coordinates of variables are ® = X*DV.

3. LOCAL PRINCIPAL COMPONENTS ANALYSIS

Let there be a binary relation between individuals with reflexive and sym-
metric properties. This relation can be represented by means of a non-oriented
graph G, where the vertices are the individuals and the edges express the binary
relation between individuals. Let @ be the (n,n) matrix associated to the graph
and R the diagonal matrix of degrees of vertices.

Theorem 1

R — @ is a positive semi-definite matrix, and it can be expressed as R—Q =
1/2T'T, where T is a (n x n,n) matrix, that crosses the edges with the vertices.
An edge joining vertices ¢ and ¢’ is coded by a sequence of zeros and a 1 and —1
in the 7 and ¢ columns. If an edge is not defined in the graph, it will be coded
as a row of n zeros.

3.1 LPCA as a transformation of data matrix

Thus, T is an operator of differences of variables between related individuals
by the graph; R" LR and TX is a (n x n,n) matrix of differences.

Let us take L = D® D as a metric for R* . That is, we define as a weight
of an edge the product of weights of the corresponding vertices of the edge.

The dual schema would now be:

rr TX" par
I M T L
TX 2
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Local Principal Components Analysis (LPCA) consists of the singular value
decomposition of the triplet (TX, M, L). Thus:

TX = VAU with VLV =U'MU = 1.

This leads to finding a subspace H which maximises, according to 3:

ITXPhIGpr = D pipedi(i, i),
ii'€G

that is, the interpoint distances related by the graph G, projected onto a subs-
pace H. This implies the diagonalization of matrix A = X'T*LTXM [1]. This
matrix coincides with the local covariance matrix 1/mX*(R— Q)X for the usual
case of p; = 1/\/m and M =1 (identity matrix), and with the contiguity ma-
trix if M = S~? [6] (diagonal matrix of the inverse of variance of variables);
in the latter case the diagonal of matrix A coincides with the Geary coefficients
of contiguity of variables [4], whereas they coincide with the local covariance of
variables in the former case.

Then the Hilbert Schmidt squared norm of matrix TX is trace(A), which
in the particular case of M diagonal, can be written as

tr(A) =37 D7 pipiem; (a5 — 20)’,
ji 1,i'€G

the measure of overall dispersion for the LPCA; which can be interpreted in
the usual cases as the sum of local variances of variables or the sum of Geary
coefficients of variables.

In LPCA we have the following transition formulae

U X'T'LVA~!
V = TXMUA™L.

The co-ordinates of edges (rows of TX) are T = TXMU = TV, where ¥ are
the coordinates of individuals. The co-ordinates of variables are ® = X'Tt'LV.

3.2 LPCA as a semi-metric in R"
Local Principal Components Analysis can also be viewed as the s.v.d. of

(X, M, T'LT); notice that now T*LT need not be a metric, but is always a
semi-metric.
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If we add to a triplet (X, M, D), the (n?,n) matrix T and a metric L in
an’ we have:

rRe XL gne T pe*
I M T D T L
X T ]

’Rp‘ —_ Rn —_ Rn
Let us also consider that rank(TX) =r.

Then, the s.v.d. of (TX, M, L) gives us:
TX = VAU?
whit V'LV = U*MU = I.

Let W be the subspace generated by all the rows of TX; the columns of
the matrix U form an orthonormal basis of this subspace. Let also Wi = (Uy)
be the subspace generated by the first k columns of U. As we have already
seen, the subspace W; is an optimal choice for keeping Tr(PsX'T*LTX M)
maximum among all k—dimensional subspaces S of W. Now Py, the projection
operator onto W, can be written as UU*M; this operator allows us to consider
the following decomposition:

X =XPy + X(I-.PYy).

The projection onto W of any row of TX is the row itself; then, TX P}, = TX
and, therefore, TX(I — Pf,) = 0.

Let us also consider
XPjy = XMUU* = VAU,
where V = XMUA™! and VYT'LT)V = I.
Summarizing,
X = VAU + X(I - 'Py)

with V*AV = U'MU = I, where A is the semi-metric T*LT. Using the same
notation as in PCA, this is to say that Xp = VkAkU,: can be considered as the
closest matrix to X in the sense of the semi-metric A; notice that V is rankr
(if, as usual, r < n).

Finally, we have V = TV; this illustrates the fact the variables have the
same co-ordinates in the two approaches that we have developed: (TX)LV =
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X*(T*LT)V. Obviously, the co-ordinates of the individuals are X MU while the
co-ordinates of the edges are TXMU.

Then, the Local Principal Components Analysis consists of decomposing the
triplet (X, M, A), where A = T*LT is the semi-metric induced by the matrix
T, obtained when crossing edges and vertices, and L = D ® D is the metric
induced by D on the edges.

Therefore, as we have seen, the two approaches that we have developed lead
to the same projections using Local Principal Components Analysis.

4. RELATION BETWEEN LOCAL AND GLOBAL ANALYSES

Let B be a (n%,n) matrix crossing the edges and vertices for a complete
graph. It can be easily shown that the LPCA of BX is equivalent to the usual
PCA of X. Moreover, we can decompose the columns of BX into two parts:
BX =TX + (B —T)X, one in the local space and the other orthogonal to it.
Since the number of edges of a contiguity or similarity graph is far lower than the
complete graph, the local variable would be very much shorter than the global
one. For this reason we weigh each individual by p; = 1/4/m and not by the
classical 1/n; this involves expanding the local variable by a factor of n?/m.
The LPCA means analyzing only the variables projected into this local space.

Consequently, we can obtain the decomposition of the global (total) variabi-
lity into two components: one, the local variability, expressingthe oppositions
between related individuals by the graph, and second, the outer variability to
the graph.

We could be interested in evﬁluating the strength of relation of the global
variables with their counterpart local ones. The projection of global variables
upon the local space are the local ones. Thus the covariance matrix with both

type of variables coincides, leaving aside a factor of expansion, with the local
variance matrix.

L _xprx=__x(r-0x
m nym

Vgl = n\/_ \/_

Moreover, we can visualise the shift when moving from global variables to
the local ones, by projecting both types of variables onto the same basis; the
most natural choice is to take as a basis the factorial axis obtained from the
global variables, and to project as supplementary the local ones.
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5. EXAMPLE OF APPLICATION

In order to illustrate how LPCA works in practice we have taken a small
data set concerning the 38 regions of Catalonia, giving for each of them the
number of municipalities according to their altitude above the sea level. We
choose D = 1/nl and M = S~? as metrics for R® and RP respectively. In
the following table we give the formed data matrix:

Number of municipalities
[0m., 100m)[100m., 200m)[200m., 600m)[600m., 1000m)> 1000m.

Baix Llobregat
Barcelones
Maresme
Vallés Occidental
Vallés Oriental
Alt Emporda
Baix Emporda
Garrotxa
Gironeés

La Selva

Alt Camp

Alt Penedes
Baix Penedés
Garraf
Tarragoneés
Baix Camp
Conca de Barbera
Priorat

Ribera d’Ebre
Baix Ebre
Montsia

Terra Alta
Cerdanya
Osona
Ripolles

Anoia

Bages
Bergueda
Solsonés

Les Garrigues
Noguera
Segarra

Segria

Urgell

Alt Urgell
Pallars Jussa
Pallars Sobira
Val d’Aran

14 10 3 0
5 2 0
18 11 1
4 8 11
6 15 16
50 14 4
35 0
0 19
12 5
6

19

19

2

2

0

15

11 1

20

. 2
2

2

11

0

23 23

2 12

21 13

24 6

4 16

2 10

20 5

33

15

28

25
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Catalonia is a small country which extends from sea level to the high altitudes
of the Pyrenees. Thus, we expect that a global analysis of such data will show
these differences of altitude, defining the main opposition between regions. On
the other hand, given that there is a contiguity relation upon the regions, it
may be interesting to analyze such data matrix by eliminating the geographical
location of regions.

Certainly, the overall {or classical) PCA of the defined triplet gives us a gra-
phical display of the variables responsible for the oppositions between regions. In
Figure 1 we can see (in capital letters) the first axis opposing municipalities below
200m. of altitude against municipalities above that altitude. Moreover, there
appears a horse-shoe effect. We also give over the same display the projection
of local variables as illustrative ones. Comparing these projections with their
global counterpart, we can appreciate a shift to the origin; that is, local variables
are “shorter” than the corresponding overall ones, indicating that variables are
positive correlated upon the contiguity graph.

Finally, by performing an LPCA we can see in Figure 2 that the main op-
position is now defined by the medium altitudes (between 200m. and 600m.)
against higher and lower altitudes than the previous interval referred to. This
reveals that one region normally has regions of similar altitude as neighbours;
that is, it is very likely that one region at sea level will normally have as a
neighbour another region with a medium level of altitude, and a region in the
Pyrenees, will currently have as a neighbour another region with medium al-
titude; in both cases there will appear edges in which the main difference is
defined by the medium altitudes (between 200m, and 600m.) or by the high or
low altitudes (above 600m. or below 200m.). However, although they will be
very unusual, it is possible to find edges defined by the difference between two
regions, one at sea level and another in the high altitudes of the Pyrenees. This
means that, keeping the geographical location constant, that is, for neighbour
regions, the opposition is defined between opposition between 200m. and 600m.
against below and above that interval. Finally, comparing the local oppositions
with the overall analysis, we can see in this case that the first main local axis in
fact corresponds to the second axis of global analysis.
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BETWEEN 100 AND 200

Between 100 and 2

BETWEEN 200 AND 600

Between 700 and 600

LOWER THAN 100

Lower thax 100

Beiween 600 and 1600

Higher than 1000

BETWEEN 800 AND 1000

HIGHER THAN 1000

Figure 1. First graphical plan of overall analysis.

Between 200 and 600

Between 100 zad 300

Lovier thaa 100

Betwe|

Higher than 1000

2 $00 snd 1000

Figure 2. First graphical plan of local analysis.
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