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DISTANCE-BASED REGRESSION IN
PREDICTION OF SOLAR FLARE
ACTIVITY

ANNA BARTKOWIAK* and MARIA JAKIMIEC

Short-term prediction of solar flare activity using multiple regression
methods was considered. The variables describing active regions the
gwen day were used to predict the flare activity on the next day.
Two groups of observational data covering the years 1988 and 1989
were dealt with. Some variants of the distance-based regression as
proposed by Cuadras and Arenas (1990) appeared to be superior to
the ordinary least squares method —by describing more accurately
the data sets under consideration.

Key words: Distance based regression, Euclidean distance, L1-
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1. INTRODUCTION

Usually, a set of predictor variables X1, ..., X, which describe the features of
solar active region on a given day is the basis in the procedure of short-term, i.e.
one day ahead, predictions of solar flare activity. Both the predictor and the pre-
dicted variables can be of various types: continuous or discrete, i.e. categorical.
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Usually, the prediction algorithms are constructed by the use of multivariate
regression functions (see e.g. Jakimiec and Wasiucionek, 1980, or Bartkowiak
and Jakimiec, 1986), discriminant functions (see e.g. Hirman et al, 1980) or
logistic regression functions (see Vecchia et al., 1980). However, the results
obtained by these methods are not satisfactory, what can be seen, a.o. in the
papers by Jakimiec and Bartkowiak (1989) and Bartkowiak and Jakimiec (1990).
First, the linear regression model does not fit ideally the investigated solar data.
In the prediction of solar flare activity we encounter the effect of asymmetry
consisting in overestimation of low flare activity and in underestimation of strong
flare activity. Second, the quality of the predictions, as measured by the multiple
correlation coefficient, is not very high; e.g. the mentioned authors, using the
classical LSE regression, got a correlation coefficient 20.50. Therefore, it seems
to be necessary to look for more sophisticated models and for more sophisticated
statistical methods.

Distance-based regression, as proposed by Cuadras and Arenas (1990), (see
also Fortiana, 1992), is a substantially new method. The approach is similar
as in Cuadras (1989) and utilizes some concepts studied formerly by Cuadras
(e.g. Cuadras, 1988). The analysis starts from a distance matrix between the
considered data vectors characterizing the considered objects. In distance-based
regression the distance matrix can be evaluated on the base of a mixed set of
variables (e.g. some of them can be continuous, the other categorical) which is a
great advancement as compared to the classical methods. A convenient method
of evaluating distances for mixed type variables was proposed by Gower (1971).

The aim of this paper is the comparison of results obtained by the ordi-
nary least squares (OLS) regression and by the distance-based regression (DBR)
proposed by Cuadras and Arenas. We consider three distances : Euclidean,
L1l-norm and Gower’s. The formulee for evaluation of these distances are given
in section 3.1 of the paper. To compare the results yielded by these methods
we perform our analysis using continuous variables only. Cuadras and Arenas
have proved that DBR evaluated from Euclidean distances based on p variables
is equivalent to the ordinary least squares regression evaluated for the same p
variables. Hence our analysis will compare, as a matter of fact, the OLS results
with those yielded by the DBR using L1-norm and Gower’s distances.

2. THE DATA

Our data comprise daily characteristics of sunspot groups as published in
SGD ( Solar Geophysical Data 1988, 1989). We have chosen for analysis those



sunspot groups which, according to Zirin et al. (1991), were BEARALERT
regions in 1988 and 1989. So called BEARALERTs are issued by the Big Bear
Observatory, on the base of solar maps. The alerts are announced only for those
sunspot groups for which a strong flare activity is expected in a near future.
However, it can happen that in such indicated regions no strong flaring would
occur soon. For many sunspot groups, for which it is judged that the probability
of the flare occurrence is much less than 0.01, the alert is not issued at all.

In this paper we analyse 10 characteristics of sunspot groups. Eight of them
(denoted in the following as X1, ..., X8) are taken as predictor variables and
two (denoted as Y'1 and Y2) as predicted variables . We make the predictions
by constructing regression equations allowing to express the expected values of
the predictor variables as linear functions of the predictors. In our problem the
predictor variables (explanatory variables in the considered regression) describe
the daily characteristics of a sunspot group observed the given day. The predic-
ted variables (explained variables in the considered regression) characterize the
flare activity in the given sunspot group the next day. So, the statement of the
problem is a very classical one. Before starting the proper calculations we have
noticed that the frequency distributions of some variables were very skew. So,
to diminish their skewness, we have performed the logarithmic transformation
X = logX for the variables X2, X4,Y1 and Y2 which have exhibited the highest
coefficient of skewness.

The meaning of the variables X1 — X8 and Y1 — Y2 taken for our further
consideration is as follows:

® X1 - Mcl - McIntosh class determined (see Hirman et al, 1980) as a product
of three McIntosh’s parameters of sunspot group.

® X2 - Area - Sunspot group area (log).

e X3 - Cnt - The number of spots in the sunspot group.

e X4 - MvXX - The maximum value of solar flare X-ray flux (log).
e X5 - NF - Total number of H, flares.

e X6 - AvHF - The average hardness index of the faint X-ray flares.
e X7 - AvHA - The average hardness index obtained for all flares.

e X8 - THI - The total hardness index.

e Y1 - MvXY - The maximum value of solar flare X-ray flux on the next
day (log).

e Y2 - Fs - The total sum of the maximum values of solar flare X-ray fluxes
observed the next day (log).



The gathered data were subdivided into two sets: 1 — the data for the year
1988, and II — the data for the year 1989. The respective sample sizes are
ny = 130 and ny; = 117. These data sets comprise individual data vectors,
each composed from p = 8 values of predictor variables and from 2 values of the
predicted variables. The data are complete, i.e. there were no missing values.

In the following the individual data vectors will be also sometimes referred
to as “data items” or simply “items” .
Table 1.

Averages and Standard Deviations for the variables X1 — X8 and Y1 - Y2
considered in data sets I and II

Data Set I n=130 Data Set II n=117

Variable Standard Standard

Average Deviation | Average Deviation
X1 - Mcl 75.14 40.38 97.27 31.76
X2 - Area 5.99 1.14 6.72 0.76
X3 - Cnt 29.38 21.89 45.84 21.00
X4 - MvXX 1.68 1.40 2.79 1.65
X5 - NF 7.36 5.32 8.13 4.55
X6 - AvHF 2.51 1.51 3.46 2.31
X7 - AvHA 4.09 2.85 5.89 3.48
X8 - THI 6.37 4.59 9.12 5.76
Y1 - MvXY 1.62 1.41 2.79 1.58
Y2-Fs 2.35 1.56 3.56 1.45

The averages and standard deviations for the considered variables are shown
in Table 1. One can see that the averages obtained for the data set II are
higher than those for the data set I. For all variables, except the X5=NF, the
differences are statistically significant. The photospheric variables (X1, X2, X3)
and the number of flares (X5) reveal higher variances in 1988 than in 1989 year,
while the variables characterizing flare activity (X4, X6 — X8,Y1,Y2) reveal
higher variances in the 1989 than in the 1988 year. One can see that, although
both data sets contain the BEARALERT sunspot groups only, in the year 1989
the flare activity was much stronger than in the year 1988. This reflects the
non-stationarity of solar activity in the solar eleven-year cycle, which is evident
even in the adjacent years 1988 and 1989. We can add that the peak of the
11-year cycle was observed in the year 1989.

To find out something about the similarity or dissimilarity on the covariance
structure of the variables recorded in the two groups of data we have constructed
biplots. They are shown in Fig. 1.
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Figure 1.

Biplots established from data sets I (upper figure) and II (lower figure). Both
biplots constructed from the variables X1-X8 and Y1-Y2.
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The biplots were constructed according to the algorithm described by Jolliffe
(1986), see also Krzanowski (1988). Speaking generally, we make first a singular
value decomposition (s.v.d.) of the data matrix X of size nxp and of rank k by
factorizing it into the form

(1) X = ULAT,

where U of size nxk and A of size pxk are rank k matrices columnwise ortho-
normal, and L of size kxk 1s diagonal with nonnegative elements.
The factorization can be rewritten as

(2) X = GH”,
with
(3) G =UL® and HT =L!-*AT

In our construction we took as X in formula (1) the matrix X = (i;) obtai-
ned from the original data matrix X by the following standardization:

ZTi; — T

—— i=1,...,n, j=1,...,p.
sjvn—1 J P

After such a standardization the crossproduct X7X appeared as the corre-
lation matrix R of the variables under consideration. The s.v.d. of X was then
obtained from properly rescaled eigenvectors and eigenvalues of the matrix R.
The final GH? decomposition was obtained by taking the constant « appea-
ring in (3) as a = 1.0. The biplot was then constructed by using the first two
columns of G and the first two rows of H7 for graphing the points-items (co-
rresponding to the rows of X) and the points-variables (corresponding to the
columns of 5{), respectively. The points-items appear in our graphs as dots, and
the points-variables as vectors emanating from the (0,0) point.

Ti; =

In the following we will be concerned only with the representation of points-
variables.

The first two components taken for constructing the biplot do account for
70.9% and 67.7% of total inertia in set I and set II, respectively. These per-
centages are reasonably high —thus the representation of the interdependency
structure hidden in the data should be reasonably good. Among others, the
angles between the vectors representing the variables should reflect the correla-
tions between the respective variables: vectors for variables whose correlation
coefficient r is equal 7 = 1 should overlap, and vectors for variables with r = 0
should be perpendicular. Let us underline that this happens only when the in-
terdependency structure is totally reproduced in the graph, i.e. the first two
components reproduce in 100% the total inertia. In our graphs the first two
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axes account only for =70% of total inertia — therefore the relations among
the variables are represented only in an approximate way.

Looking at the biplots shown in Fig.1 one can state that, in principle, the

vectors representing the variables under consideration exhibit a much similar
pattern.

All the variables are correlated positively. It is quite amazing that the vectors
X1,X2, X3 —describing the photoshere— are located on one side of the bunch
of the vectors-variables, and the vectors X4, X7, X8 —describing the flaring

activity— on the other side of this bunch. This can be seen dlearly in both
plots.

The vectors Y1 and Y2 representing the predicted variables are located so-
mehow in the middle of the bunch of the variables.

From this configuration one is tempted to infer that both groups of predictors,
i.e. both the photospheric and the flare variables are necessary to make a good
prediction.

The described structure is somehow blurred by the variables X5 and X6
which are located in the two constructed biplots in different positions with res-
pect to the mentioned groups of variables. This happens mainly with the variable
X6 whose position is quite different in the two biplots representing the data from
the two years.

After stating the blurring role of the variable X6 we have constructed on
the basis of the other nine variables new biplots (not shown in this paper). The

above described patterns of location of the variables in the biplots remained the
same.

Now let us return to the main topic of the paper, namely to the predictions
of the variables Y1 and Y2 from the variables X1 — X8. Clearly both the pho-
tospheric (X1, X2, X3) and the flare (X4, X7, X8) variables should be included
into the predicting equation; despite the fact that in the year 1989 (data set II)
the variables X1, X2, X3 —as compared with the flare variables— will have less
impact on the predictions (this may be inferred from the fact that in the year
1989 both Y'1 and Y2 are closer to the “flare” variables and more distant to the
photosheric variables).

A final conclusion after inspecting the two biplots in Fig. 1. —especially
when dropping the variable X6— could be, that despite of some minor dissimi-
larities in the location of the vectors representing the variables, their intercorre-
lation structure in both data sets appears to be the same, with minor departures
only. The same seems to be true for the predicted variables Y1 and Y2. Howe-
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ver, since the position of these variables is a little shifted in the two plots, and
additionally the variable X5 has changed its position in these plots, it would be
overoptimistic to expect that the predicting equations in the two data sets (re-
presenting two adjacent years) will be the same. Nonetheless, predictions made
in one set from the equation established in the other set should not be hopeless.
In Section 4 we will try to find out how such predictions do work. An analysis of
the interdependence structure when taking two additional explanatory variables
is presented in a paper by Jakimiec and Bartkowiak (1994).

3. EVALUATING THE DISTANCE-BASED REGRESSION

We consider the distance based regression as proposed by Cuadras and Are-
nas (1990) and implemented in MULTICUA (Arenas et al., 1991). In dependence
of the chosen distance matrix their method allows to consider predictor variables
also of mixed type. However our analysis will be based on continous variables
only because we want to compare the results obtained from the distance-based
method to those obtained for the OLS method.

The distance-based analysis proceeds in the following steps:

Step 1. Taking into consideration the explanatory variables evaluate the dis-
tance matrix between the individuals taken for the analysis. Let this
be the matrix D of size nxn (the matrix D is symmetric, so we need
in fact only, say, the lower triangle of this matrix).

Step 2. Using the methods of Multidimensional Scaling (see, e.g., Mardia,
Kent & Bibby, 1979) get an equivalent representation of the data
items in an Euclidean space by evaluating the principal coordinates
(PC’s) with respect to the inner product matrix B derived from the
distance matrix D. The obtained PC’s are mutually orthogonal.

Step 3. Evaluate the Pearsonian correlation coefficient of each PC with the
predicted variable Y. Retain k principal coordinates yielding the
largest squared correlation with Y. Since the principal coordinates are
mutually orthogonal, the multiple determination coefficient of Y with
the retained principal coordinates is simply the sum of the squared
correlation coefficients evaluated between Y and the individual PC’s.

Step 4. Perform an OLS regression of Y from the retained principal coordi-
nates. If desired then evaluate the predicted values of Y for given
data vectors x and also the residuals, i.e. the differences between the
observed and the predicted values of Y.
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The calculations for our analysis were done using a special program, REG-
DIST, developed in the Institute of Computer Science, University of Wroclaw.

Now we give some details on implementation of these steps.

3.1. Implementation of step 1. Choosing the distance matrix

Here the choice of the formula for the evaluation of the distance between
two individuals is crucial. Say, we consider n individuals and p variables, the
i-th individual described by the vector of features x; = (zi1,...,zip), i = 1, ..., n
Say, we want to evaluate the squared distance d(i, ;) between the individuals
no.i and no.j. We will consider in our further analysis the following (squared)

distances:
Euclidean Distance (EUCL):
P
(4) Z -'L'th - z]h

h=1

Ll-norm Distance (L1):

p
(5) d3(i,j) = E |zin — zjn
h=1
Gower’s Distance (GOWER):
P
(6) dg(i,5) = (3 lzen — z;nl/Gn)/p
h=1

where Gp = max(z;n) — min(z;z)
1 T

The EUCL and the L1 distances depend strongly on the units in which the
subsequent variables are expressed. This would impose a dominance of some
variables depending on their units. To avoid it we can normalize the observed
values by dividing them by the respective standard deviations or ranges.

The Gower distance is invariant under linear transformations of units in
which the considered variables are expressed and therefore it does not need any
normalization.
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Let D denote the matrix of squared distances: D = (d%(4, j)), where for A
we may substituie £ (Euclidean), L (L1-norm) or G (Gower’s). It is known (see,
e.g. Mardia et al.,1979, or Cuadras,1991)) that all the three distances introduced
above yield distance matrices D which are Euclidean from the Multidimensional
Scaling perspective, which means that there exists a configuration of points in
some Euclidean space whose interpoint distances are given by D; that is, for
some k there exist points (row vectors) zi,...,z, € R* such that

dfs = (zr — 2,)(2zr — za)T~

3.2. Implementation of step 2. Evaluation of eigenvectors of the trans-
formed distance matrix

Using Multidimensional Scaling methodology we first transform the conside-
red (square) distance matrix D according to the formulee:

A= (aij)» with a;; = —(d?j)/2,

(7) B =HAH, with H=1I, —n"'117.

The matrix B will be called in the following the centered inner product ma-
trix or simply the inner product matrix. Let us notice that the matrix B has
dimensions nxn and is symmetric. It should be stressed that the matrix B itself
is not a distance matrix.

It is known that the matrix B derived from the introduced in Section 3.1
distances is nonnegative definite. To get from this matrix a representation of
the data items in an Euclidean space we perform the spectral decomposition of
B by computing its eigenvalues and eigenvectors:

B = AT,

with I' denoting the matrix of eigenvectors I'y,...,[,,_; contained in I' co-

lumnwise: T' = (T'y,...,Ts_1), and A being the diagonal matrix of eigenva-

lues: A = diag (A1,...,An=1). The (column) vectors T'y,..., -, are orthonor-

mal, i.e. ITT = I. Obviously each vector I, A = 1,...,n, has dimension n:
T T

Ch” =(yihy-- - Ynn) -

When the size n is large, then the computing of the eigenvalues and of the
eigenvectors of this matrix can cause some computational problems. E.g. for
n = 130 we should compute possibly 129 eigenvectors, each of dimension 130,

and we might have some problems with memory allocations, especially when
using smaller computers.
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Since the inner product matrix B —when using the three distances introdu-
ced in Section 3.1— is nonnegative definite, all its eigenvalues should be nonne-
gative and their sum should be equal to the sum of diagonal elements of B. Each
eigenvalue can be regarded as the variance of the principal coordinate derived
from the eigenvector corresponding to this eigenvalue (see next subsection for a
definition of a principal coordinate). Of course, principal coordinates with zero
variance have no meaning for us.

Taking these facts into account we decided to proceed in the following man-
ner:

First of all we fix € > 0, a small real number (in our program we accepted

€ = 0.00001). Next we continue stepwise, computing subsequent eigenvalues in
aloopforh=1,...,n—1.

Say, we have already computed m eigenvalues (0 < m < n—1). We compute
the next, (m + 1)-th eigenvalue, denoted by A,41, and check the inequality:
Am+1 > €. If this inequality holds, we retain the (m+1)-th eigenvalue, otherwise
we retain only m eigenvalues and stop the procedure.

After finishing these evaluations we check whether the sum of the extracted
eigenvalues reproduces the trace of the matrix B.

3.3. Implementation of step 3. Choosing the relevant principal coor-
dinates

Say we got from the spectral decomposition of the matrix B exactly m ei-
genvalues satisfying Ay > A3 > ... > A, > €. For each of these eigenvalues we
evaluate the corresponding principal coordinate by rescaling of the eigenvector
by its eigenvalue. We will denote the derived principal coordinates (PC’s) by
fl, ey f‘m; the tilde ~ should remind us that these are rescaled eigenvectors:

fh=rh/\h1/2, h:l,...,m.

Obviously ITTh = Ay and T7T), = 0for g #£h, g,h=1,... k.

Analogously as the eigenvectors 'y, ..., [, also the derived principal coor-
dinates can be put together into a matrix of size nxm, m < (n — 1) denoted
now as I

T = (%)= (T1,...,Tm).

In such a way we obtain a representation of the n data items in an Euclidean

space R™. In this situation the I — th row of the matrix T, i.e. the vector 3, can
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be viewed as the vector of coordinates of a point P; € R™. Obviously

il = (ﬁ’lm,---,’.)‘lm)-

So far only the predictor variables were dealt with. Now we should relate
them with the predicted variables Y1 and Y2. We shall do it separately for each
of them.

Let Y denote the considered predicted (explained) variable and y = (v, ...
yn)T its sample values.

We compute the Pearsonian correlation of each of the established principal
coordinates I.“l, ..., T\ with the vector y. For further considerations we take
into account instead of the direct Pearsonian correlation r its square, called also
the coefficient of determination. We denote the squared correlation coefficient
by RR. The magnitude of RR gives information about the part of the total
variability of the variable Y that can be explained by the impact (regression)
of the considered principal coordinate. The obtained RR’s are then ordered
by decreasing values and their cumulative sums are computed. Our computer
program presents in the screen the ordered RR’s together with their cumulative
values and asks for k, the number of principal coordinates to be taken for further
analysis.

Suppose we have retained k principal coordinates 1:5‘, cey l.",-k mostly corre-
lated with the vector y. For simplicity the retained PC’s will be denoted from
now by [y,.... Tk These principal coordinates can be put together as column
vectors into the matrix ;) = (f‘l, A f‘k). Obviously:

- o=
LioTw) = Aw),
with A(;) being the diagonal matrix of the eigenvalues corresponding to the

chosen PC’s.

The multiple squared correlation coefficient between y and the k retained
principal coordinates will be denoted by RR(k).

3.4. Implementation of step 4. Evaluation of the regression and of the
residuals

Due to the fact that all the principal coordinates are mutually orthogonal the
computations of the ordinary regression are straightforward. We use here the
formulee given by Cuadras and Arenas. Our interest is focused on the predicted
values g; obtained from this regression. We are also concerned with the residuals
Ti =Y — Y
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The regression equation establishing the linear relationship between the pre-
dicted variable Y and the retained PC’s taken as predictors is:

(8) Y=ﬂo+ﬂ1f1+...+5kfk+€(k)-

This equation corresponds to an ordinary regression model. The unknown
parameters Sy, 31,...,0r can be computed by known methods. The mutual
orthogonality of the involved PC’s, i.e. of the column vectors T, ..., s makes

the computations especially easy.

Before considering expected (predicted) values of the variable Y to be eva-
luated from the established regression equation given by (8) let us point out two
possible situations:

e The data vector comprising the values of the predictor variables recorded
for the item for which we want to make the prediction — is one of the data
vectors on the base of which the above regression was established.

o The data vector is a completely new vector.

Corresponding to these two situations let us introduce the following nota-
tions: We will call the data set from which the PC’s were evaluated — the base
data set. A vector x™ belonging to this set will be called own data vector.

A set of vectors not belonging to the base data set will be referred to as
foreign data set and the vectors belonging to this set will be called foreign data
vectors.

Now suppose we have a data vector x* = (z7, ..., z;) with known values and
we want to evaluate for this vector the predicted value of the variable Y. We
have to distinguish between two cases:

(1) the vector x* comes from the same base data set, from which the principal
coordinates contained in the matrix I'(x) were evaluated, i.e. it is an own
data vector;

(i) the vector x™ does not belong to this set, i.e. it is a foreign data vector,
which means that it belongs to a foreign data set.

Suppose the vector x* belongs to the base data set. In this case we can find
such a subscript 7 that the vector x* is identic with the data vector x; from the
base data set. To evaluate the predicted value y* = y; for the respective item
we use the formula (see Cuadras and Arenas, 1990, formula (14)):
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(9) Ui = Bo+ Bryir + ... + B ik
with fo =gand B = Aj Ty, where B=(B1,...,5)

Now suppose the vector x* corresponds to a new data item not comprised in
the base data set, i.e., it is a foreign data vector. The evaluation of y* is in this
case more difficult. The problem was solved by Cuadras and Arenas. First we
position the point x* in the spaces R™ and RX. To do it we have to evaluate the
vectors b and d*, where

~ v

b= (bl, . -‘En) = (bllv ~--7b1n)

is a row vector comprising the diagonal elements of the inner product matrix B
(see eq.(7)) evaluated from the base data set, and

d" = (d%,...,d%)

is the row vector comprising the squared distances of the new data item x* from
all the n data items contained in the base data set.

The coordinates ¢ and c(x) of this new data vector x* in the formerly es-

tablished spaces R™ (of all evaluated PC’s) and R* (the retained PC’s mostly
correlated with y) are respectively:

1. .-
c=3(b—d A ' ceRrm

and 1
Ck) = 5(5 - d*)I‘(k)A(‘kl), Ck) € Rk.

Obviously the components of the vector c(;) are identic with the first
components of the vector c.

Now the predicted value y* can be evaluated by the formula :

=7 —1{T
(10) Y= y+C(k)A(k)I‘(k)y.

After evaluation of the predicted value we calculate the residuals as the dif-
ferences between the observed and predicted values. To make clear whether the
residuals were obtained using predictions by formula (9) or by formula (10) we
shall use the following denotations: r; is the residual obtained when evaluating
the predicted value on the base of PC’s from the own data set, i.e. by (9); and
v; 1s the residual-obtained when evaluating the predicted values on the base of
PC’s from a foreign data set, i.e. by (10).
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4. RESULTS

We have analyzed the data presented in Section 2 of the paper . Let us
remind that these were two sets of data, each comprising two predicted variables

Y1 = MvXY and Y2 = Fs, both predicted from the same set of p = 8 predictor
variables.

The evaluations of the EUCL and of the L1 distance were done with norma-
lized variables, i.e. at the begin of the calculations the data values were divided
by the respective standard.deviations.

The covariance structure in both data sets was similar except of the varia-
bles X5 and X6 (see Fig.1). Since the predictor variable X6 could blurr the

covariance structure in both data sets, the calculations were repeated omitting
this variable.

The evaluations were carried out along the steps described in Section 3. We
have considered the distances evaluated by three methods: Euclidean (EUCL),
Ll-norm (L1) and Gower’s (GOWER).

Our interest was focused on the following points:

1. To what degree of accuracy can the inner product matrix B be reproduced
by h (h&€n — 1) eigenvectors?

2. Suppose that we retain k¥ PC’s yielding the largest determination coeffi-
cients RR with the predicted variable Y. Let RR(k) denote the squared
multiple correlation coefficient (determination coefficient) of the conside-
red variable Y with the k retained PC’s. We ask: Is there any difference

between the values of RR(k) obtained when considering different distan-
ces?

3. How much differ the residuals obtained when using different numbers of
PC’s and different distances?

The results are as follows:

4.1. Exhaustion of the trace of the inner product matrix B by subse-
quent eigenvalues

The percentages of cumulative sum for subsequent eigenvalues —when con-
sidering p=8 predictors— are visualized in Figure 2.
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Percentage of exhaustion of the trace of the inner product matrix B vs the
Number of subsequently extracted eigenvalues — stated in data set I (upper

figure) and II (lower figure).
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One can see the substantial difference between the curve obtained for the
Euclidean distance and the two curves obtained for the L1-norm and Gower’s
distances. For Euclidean distances the complete, i.e. 100 percentage exhaustion
is achieved with p = 8 PC’s, while for the other two distances that happens only
with n — 1 PC’s.

Considering the Euclidean distance the trace is practically exhausted by the
first two eigenvalues. Thus the mutual inter-point configuration of the predictor
variables can be visualized by a cluster of points in a plane obtained from the
first two principal coordinates.

Quite different situation is met when considering matrices obtained for the
other two methods. Here the cumulative sum increases steadily and it is difficult
to decide how many PC’s should be taken to obtain a satisfactory representation
of the interdependency structure of the predictors.

4.2. Evaluation of the correlation coefficients R(PC;,Y)

We have computed the squared Pearsonian correlation coefficients RR(PC;,
Y) taking i = 1, ...,8 (all positive eigenvalues) for the Euclidean distance, and
t=1,..,n—1 (all PC’s) for the two other distances. The obtained RR’s were
ordered according to their decreasing values. This was done for both predicted
variables considered in the data sets I and II.

Obviously a cumulative sum, evaluated for, say, k PC’s, is in fact the coef-
ficient of determination, or the square of the multiple correlation coefficient
between the considered variable Y and the k principal coordinates yielding the
largest squares of the univariate correlation coefficients.

In upper part of Table 2 we show the multiple determination coefficients
RR(k) obtained for the three analysed distances when considering various num-
bers (k) of principal coordinates taken according to the ordered RR’s. For the
Euclidean distance with p = 8 predictors at most k = 8 PC’s could be evaluated.
Comparing the multiple determination coefficients obtained for the L1-norm and
Gower’s distances one can see that these are higher by about 0.10 as compared
with those obtained from the Euclidean distances. The RR(k) values increase,
up to about 0.95, when more and more principal coordinates, up to k = 60,
are taken into consideration. The limiting value of the RR’s when using the
Ll-norm and the Gower distances is RR(n — 1)=1.0. The gains in the RR’s ob-
tained from k = 8 PC’s, when using the L1-norm or Gower’s distances instead
of the Euclidean distance, range from 0.0672 to 0.1640.
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Table 2.

Determination coefficients RR(k) for three analysed distances and for varying
numbers k of PC’s. Results when considering 8 and 7 predictors.

8 Y1 = MvXY Y2 =Fs
predictors | Data Set I | Data Set II | Data Set I | Data Set II
Distance RR(k) | k RR(k) RR(k) | £k RR(k)

EUCL 0.3800 { 7 0.3768 0.4885 | 7 0.4043
0.3800 { 8 0.3768 0.4886 | 8 0.4044
04771 | 7 0.5211 0.5536 [ 7 0.5056
8 0.4993 | 8 0.5408 8 0.5717 | 8 0.5253
L1-NORM | 14 0.6100 | 14 0.6427 | 14 0.6606 | 14 0.6239
16 0.6368 | 16 0.6711 | 16 0.6843 | 16 0.6523
24 0.7299 | 24 0.7667 | 24 0.7666 | 24 0.7446
60 0.9505 | 60 >.9503 | 60 0.9513 | 60 0.9508

7 04554 | 7 0.5103 7 05405 | 7 0.5202

8 04773 | 8 0.5313 8 0.5558 | 8 0.5378
GOWER | 14 0.5893 | 14 0.6359 | 14 0.6345 | 14 0.6352
16 0.6204 | 16 0.6657 | 16 0.6581 | 16 0.6648
24 0.7241 | 24 0.7616 | 24 0.7396 | 24 0.7658
60 0.9509 | 60 >.9518 | 60 0.9504 | 60 >.9520

~f oo ~3| >
~3| o0 |

7 Y1l = MvXY Y2 ="Fs

predictors | Data Set I | Data Set II | Data Set I | Data Set II
Distance k RR(k)| k¥ RR(k)| k¥ RR(k) | k RR(k)

EUCL 7T 03734 | 7 03606 | 7 04760 | 7 0.3795
7 04937 | 7 04984 | 7 05945 | 7 0.5214
8 05116 | 8 0.5179 | 8 0.6098 | 8 0.5418
L1-NORM | 14 0.6047 | 14 0.6186 | 14 0.6810 | 14 0.6429
16 0.6317 | 16 0.6446 | 16 0.7003 | 16 0.6710
24 0.7240 [ 24 0.7361 | 24 0.7728 | 24 0.7539
60 0.9348 | 60 0.9512 | 60 0.9486 | 60 0.9458
7 05002 7 04922 | 7 05680 | 7 0.5044
8 0528 | 8 05112 8 0.5878 | 8 0.5218
GOWER | 14 0.6424 [ 14 0.6015 | 14 0.6817 | 14 0.6108
16 0.6679 | 16 0.6273 | 16 0.7064 | 16 0.6351
24 0.7578 | 24 0.7195 | 24 0.7856 | 24 0.7234
60 0.9491 | 60 0.9474 | 60 0.9533 | 69 0.9463
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Squared correlation (RR) vs the Number of selected Principal Coordinates
(PC’s) considered as predictors for Y2=Fs — in data set I (upper figure) and II

(lower figure).
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For comparison with the p = 8 predictor set used when evaluating the de-
termination coefficients shown in upper part of Table 2, we show in lower part
of Table 2 analogous determination coefficients obtained when using only p = 7
predictor variables. Working with Euclidean distance we could obtain only 7
PC’s. Therefore, when displaying the RR’s obtained by use of the two other
distances, we show the respective values RR(k) for comparative purposes for
k = 7,8,14,16,24,60. The gains from the use of the L1-norm or Gower’s dis-
tances, instead of the Euclidean distance, range from 0.0920 to 0.1419.

The cumulative sum RR(k) of the ordered RR’s versus k, the number of PC’s
yielding the subsequent sums, is visualized in Figure 3. This is shown only for
the L1-norm and Gower’s distances and for 55 PC’s yielding the greatest RR’s.
One can see the steadiness of the increase of the respective cumulative sums.

The upper graph in this Figure corresponds to data set I and the lower graph
to data set II.

In Table 3 we show the no.’s (i.e. the id numbers) of the PC’s that gave the
largest RR’s with the predicted variables. One can see that, for both predicted
variables Y'1 and Y2, the 1-st principal coordinate gave always the largest values
of RR, 1.e. in all cases it was the first PC that was identified as the most
important one.

The no.’s of the second most important PC vary for various cases. There are
no similarities between the id numbers obtained for p = 8 and p = 7 predictors.
When the L1-norm or Gower’s distances are used, quite often a PC with a high
no., was identified as playing the second most important role. We find here the
no. 2 as the smallest id number and the no. 74 as the highest one.

The same can be said when looking at the no of the third most impor-
tant principal coordinate —obtained when using the L1 or Gowers’s distances.
Among the id numbers of PC’s contained in the first triplet of most important

PC’s we have such high no.’s as 23, 45 and 46 for p = 8, and 61, 74 and 94 for
p = T6.

One can also see in Table 3 that among the eight PC’s yielding the largest
cumulative sum of the RR’s there are PC’s with as high no.’s as no. 121 and

123. This obviously can be stated again only for the L1 and Gower’s distan-
ces.

From this we might conclude that using the L1 or Gower’s distances we
should, in fact, compute the all possibly available PC’s and next check all of
them for their correlations with the dependent variable.
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Table 3.

No.’s of eight Principal Coordinates yielding the largest values of the
determination coefficient RR in data sets I and II. Analysis is performed first
with all 8 predictor variables and next with 7 predictor variables only.

Distance | Y | Set | No.s of eight Principal Coordinates RR(8)
Euclidean | Y1 | T |1 5 4 2 8 6 7 3 | 0.3800
Distance Imj1r 6 2 8 7 3 4 5 10.3768
Y2 1|1 4 5 8 2 6 3 7 |0.4886

Im|j1 6 8 7T 3 4 2 5 | 0.4044

Ll-norm [Y1| T |1 46 2 82 35 23 24 6 | 0.4993
Distance Irij1 13 17 67 38 73 102 28| 0.5408
Y2| I |1 23 6 65 80 12 79 46 |0.5717

I 1 17 13 69 81 67 38 102/ 0.5253

Gowers |Y1| I |1 2 45 23 38 80 6 12 | 0.4773

Distance Irj{1 13 16 102 22 38 17 29| 0.5313
Y2 1 |1 6 23 12 80 121 79 107 | 0.5558

Im |1 22 13 102 81 17 79 86| 0.5378

Distance | Y | Set | No.’s of seven Principal Coordinates | RR(7)

Euclidean | Y1 | I |1 3 2 7 5 6 — |0.3734
Distance Im |1 5 7 6 4 3 —|0.3606
Y2 1 |1 4 7 5 2 6 — | 0.4760

II |1 3 2 7 4 6 — | 0.3795

Llnorm |Y1| I |1 40 2 5 111 96 72 — | 0.4937
Distance I {1 61 19 12 56 103 97 — | 0.4984
Y21 1 |1 40 5 72 10 74 20 — |0.5945

Ir |1 19 94 73 104 103 61 — | 0.5214

Gowers | Y1| I |1 2 40 74 5 23 39 — | 0.5002

Distance Imi{1 12 26 61 11 74 19 — | 0.4922

Y2 I |1 74 5 39 14 40 123 — | 0.5680

41 12 19 26 79 104 11 — | 0.5044
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Residuals against Predicted values of the variable Y=Fs when considering k=8
PC’s (upper figure) and k=35 PC’s (lower figure) * denotes single point 0 denotes
multiple (overlapping) points.
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Predicted values of Y2=Fs against observed values of this variable when consi-
dering k=8 PC’s (upper figure) and k=35 PC’s (lower figure) * denotes single
point 0 denotes multiple (overlapping) points.
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4.3. Evaluation of predicted values and analysis of residuals

The main goal of our work was to compare the usefulness of the distance
based regression in flare activity predictions. The quality of a regression method

can be gauged in a very appealing way by looking at the residuals obtained from
the respective regressions.

To illustrate directly the differences between the predicted values y calcu-
lated on the basis of increasing number of PC’s we have constructed several
scatterdiagrams visualizing the relations between the residuals r; and the va-
lues g;, predicted on the basis of various numbers of retained PC’s. In Figure 4
we show exemplary scatterdiagrams obtained for the variable Y2 when making
predictions in set II on the basis of PC’s evaluated in the same set. The predic-
ted values y; were evaluated by use of the Gower distance method both for the
number k = 8 of PC’s (upper part of the figure) and for k£ = 35 of PC’s (lower
part of the figure). Multiple (overlapping) points are marked by 0’s. One can
see the substantial difference between these two clusters of points: the values of
r; obtained for k = 35 PC’s are distributed more closely to zero line than those
obtained for £ = 8 PC’s.

Similarly, for the same case (i.e. for the data set II and for the variable Y'2),
we show in Figure 5 the predicted values g; versus the observed values ySOb’).
The predicted values were also evaluated by use of the Gower distance method
with £ = 8 PC’s (upper part of figure) and with £ = 35 PC’s (lower part of
figure) . One can see that the points obtained for £ = 35 of PC’s are distributed

more closely to the diagonal line than those obtained for k = 8 of PC’s.

Looking at these figures one can see that when retaining a higher number of
PC’s we can describe more accurately the interdependency structure in the data
set under consideration; hence the residuals become smaller and smaller with
increasing number of PC’s taken for prediction.

In our analysis with two sets of data we wanted to evaluate the quality of
predictions not only for the own data sets but also make some inference for
data vectors belonging to foreign data sets. We proceeded as follows: First we
considered the data set I as the base data set. We evaluated for this set the
PC’s and next —using formula (9)— the predicted values g; for the data items
i =1,...,130, i.e. for all the items belonging to this data set. The respective
residuals were evaluated as:

ri=y" — g for i=1,...,130.

Next, with the same base data set we took in turn the data vectors from the
second data set, considering them as new observations. We evaluated for them
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the predicted values by means of formula (10). The respective residuals were
now evaluated as:

v =y, -y for i=1,..,117,

where yz(Obs) denotes now, for the i — th data item, the value of the predicted
variable Y considered in the second data set, and ; denoges the respective value

evaluated by formula given by eq.(10) using the matrices [ (k) and A (i) evaluated
from set 1.

Next we interchanged the meaning of the two sets. Set 1l-was taken as the
base data set and set I was considered as a foreign data set. We evaluated for the
data vectors belonging to set II the predicted values ¢; for i = 1,...,117 and the
residuals 7; from PC’s obtained from the own data set. In turn we considered
the data vectors from the first data set as new data vectors and evaluated for
them the predicted values y; and the residuals v; using the PC’s from the set II.

The evaluations were carried out for each data set in six setups established by
combinations of the two predicted variables Y1 = MvXY and Y2 = Fs crossed
with the three methods of computing distances. For each setup by taking into
account the two groups of data and the two kinds of residuals (i.e. 7; and v; )
we got four series of residuals.

Summary of the analysis is presented in Table 4.

We present in Table 4 only the results obtained when considering the full set
of predictors, i.e. the variables X1 — X4. The results obtained after dropping
the variable X6 from the set of predictors (see the discussion in Section 2) look
very similar and are not shown here.

The series of residuals were characterized by their means (AV,, AV,), stan-
dard deviations (SD,,SD,), and the quotients ¢, = SD,/SDy and ¢, = SD,/
SD, obtained as the ratios of the standard errors of the residuals r; and v; to
the standard deviation of the considered variable Y, respectively. The means
AV, are all equal to zero, and therefore they are not shown in Table IV. The eva-
luations of the predicted values were done taking into account k = 3 and k = 8
PC’s. The squared multiple correlation coefficients RR(k = 3) and RR(k = 8)
are shown in Table IV too.

Statements made when analysing values shown in Table I'V:

1. Estimation from the own data set

(a) All the means AV, of residuals obtained when making the prediction

from own data set appeared to be equal to zero and therefore they
are not shown in Table 4.
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Table 4.

Averages (AV,), standard deviations (SD,,SD,) and quotients
(gr, qv) for the predicted variables Y1=MvXY and Y2=Fs.

Estimation from
Y | Data own data set | foreign data set
Set | Distance | k |.RR(k){SD, gr | AV, SD, .4y
I EUCL |3]0.3566| 1.14  0.81|-0.47 1.20 0.85
M 810.3800 ] 1.11 0.791-0.34 1.22 0.87
v L1- 310.3686 | 1.12 0.80|-0.54 1.30 0.92
X NORM |8]0.4993 | 1.01 0.72-044 1.46 1.04
Y GO- [3(0.3559| 1.13 0.80(-0.56 1.21 0.91
WER |80.4773 | 1.02 0.72|-0.64 1.50 1.06
I EUCL |3]0.3667 | 1.26 0.80| 0.78 1.33 0.84
810.3768 | 1.25 0.79] 091 1.35 0.85
L1- 310.4162 | 1.21 0.77] 0.67 1.34 0.85
NORM |8]0.5408 | 1.07 0.68| 0.49 1.37 0.87
GO- |3]0.4133| 1.24 0.78) 0.70 1.31 0.83
WER |8(0.5313| 1.08 0.68| 0.74 1.37 0.87
I EUCL |3]0.4786| 1.13 0.721-0.42 1.23 0.79
810.4886 | 1.12 0.721-0.40 1.21 0.78
F L1- 310.4685| 1.14 0.73|-0.61 1.26 0.81
s NORM |8]0.5717 | 1.02 0.65(-0.42 1.45 0.93
GO- [3(0.4649| 1.14 0.731-0.74 1.32 0.85
WER | 8]0.5558 | 1.04 0.67(-0.91 1.59 1.02
I EUCL |3]0.3916| 1.14 0.79| 0.67 1.19 0.82
810.4044 | 1.12 0.77| 0.79 1.22 0.84
ABS [3]0.4231) 1.10 0.76 1 0.50 1.19 0.82
810.5253 | 1.00 0.69| 0.57 1.26 0.87
GO- |3]0.4302]| 1.10 0.76 | 0.51 1.21 0.83
WER |810.5378 | 0.99 0.68| 0.61 1.29 0.89
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(b)

Obviously the values RR(k = 8) are consequently higher than those
of RR(k = 3) evaluated for the same data set, the same predicted
variable and the same method. This has to be so. Introduction of
more explanatory variables (in our case more PC’s) into the regression
cannot decrease the explained variance, equivalently can not decrease
the squared multiple correlation coefficient.

Comparing the squared correlation coefficients RR, evaluated with
k = 8 PC’s, obtained for the three used distances we state that for all
setups the L1-norm and Gower distances yield systematically higher
values of RR than the Euclidean distance do, and consequently lower
values of SD, and g,.

Analogously, comparing the standard deviations SD,’s and the quo-
tients ¢,’s evaluated for the three distances we state that the appro-
priate values obtained in the case of estimation from k& = 3 PC’s are
systematically higher than those for £ = 8 PC’s. This could be ex-
pected for the same reasons as explained above: with increase of the
determination coefficient RR the corresponding standard deviation of
the residuals should decrease (unless there are not too few degrees of
freedom left).

2. Estimation from the foreign data set

(a)

(b)

The means AV, of residuals obtained when making the predictions
from a foreign data set are systematically either negative (when we
predict the variables Y'1 and Y 2 in set I using the regression equation
established from set II) or positive (when predicting the same va-
riables in set II from the regression established in set I). That means
that for our data all the predictions based on a foreign regression (i.e.
on a foreign set of PC’s) are systematically biased and we make regu-
larly either overestimation or underestimation of the predicted values.
This could eventually be corrected by adding a suitable constant to
the predicted values.

The standard deviations (SD,) and the respective quotients (g,) cha-
racterizing the residuals obtained when using for prediction k£ = 3
PC’s established in a foreign data set —are systematically higher
than the analogous SD,’s and ¢,’s obtained when making the res-
pective predictions from the own data set. The same is true when
considering predictions made on the basis of k = 8 retained PC’s.
That means that predictions from a foreign data set are generally
worse than analogous predictions made from the own data set— and
this was stated in our data using both k¥ = 3 and k = 8 PC’s for pre-
dictions. The differences in the quotients obtained when predicting
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(¢)

(d)

from the own and the foreign data set are within the range (0.04 -
0.12) and (0.06 - 0.35) for k = 3 and k = 8, respectively.

Comparing the standard deviations SD,’s of residuals and the quo-
tients ¢,’s —obtained when making the prediction from k£ = 3 as
opposed to k = 8 PC’s we are surprised to find that in 11 of the 12
performed analyses the values of SD, and ¢, obtained when predic-
ting from k = 8 PC’s are worse than the analogous values obtained
from k& = 3 PC’s only.

This is a warning against taking too many PC’s for prediction!

Comparing the standard deviations of the residuals and the resulting
quotients within the methods EUCL, L1 and GOWER we state that:

i. using k = 3 PC’s for prediction we obtain in majority of the
setups nearly the same values of the residuals and of the quotients
for all three considered distances;

ii. using k£ = 8 PC’s the respective values of SD, and ¢, obtained

with L1-norm and Gower’s distances are decidedly higher than
those yielded by the Euclidean distances. It happened even, that
in two of four presented in Table 4 analyses the Gower distance
yielded quotients ¢,=1.06 and ¢,=1.02, which means that the va-
riance of the residuals is greater than the variance of the predicted
variables.
This again is a strong warning against using too many PC’s that
are known to describe in a satisfactory manner the interdepen-
dency structure in the own data set, however could be totally
unsuitable for the new data set under consideration.

5. DISCUSSION

Generally we found that the regression obtained when using the L1-norm or
the Gower’s distance is superior to that based on Euclidean distances —when
describing the given data set. This can be seen when comparing the coefficients
of determination (RR) obtained with the the same (i.e. k¥ = 8 ) number of
principal coordinates.

Since it is known (the proof is presented by Cuadras and Arenas, 1990) that
the regression based on Euclidean distances with p PC’s is equivalent (in re-
sults, e.g. in the coefficient of determination and in the predicted values of Y)
to the ordinary least squares method with p variables, we may infer that the
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distance-based regression using the L1-norm or the Gower’s distance describes
the considered data set more accurately than this is done by means of the clas-
sical OLS method. Moreover, retaining more and more principal coordinates
(which is possible, when using L1-norm and Gower’s distances, but what is not
possible when using the Euclidean distances) we can make the residuals smaller
and smaller —up to the final pace, when with n — 1 PC’s we obtain a total
explanation of the variable Y by the considered PC’s.

However, these fantastic results are achieved by accounting for the particular
configuration of the observed data vectors. It is sure that a certain part of this
configuration arose from random effects. Therefore, it should be put clearly
that a high number of PC’s is certainly useful to describe the given data set (a
random sample from a population under consideration), however it may be quite
useless for describing the same features in another data set representing another
sample for the same population, especially if this data differs in some particular
aspects from the given data set.

In our paper we have considered two sets of data: one describing sunspot
group activity during the 1988 year, the other during the 1989 year. We have
made predictions for the year 1989 using the distance-based regression evaluated
for the 1988, and vice-versa. The interdependency structure in the considered
sets of data was discussed in Section 2. To some extent this structure was found
to be similar, although not identic. This made us feel permitted to try to make
predictions in one of these sets of data from regression (PC’s) established in
another set. We stated (see Table 4) that taking k = 3 PC’s from the foreign
data set one can get reasonable predictions —although systematically biased
(with some additional knowledge on the solar activity process the bias could be
removed in a reasonable way).

Taking for predictions ¥ = 8 PC’s from the foreign data set we got often
much worse or even very bad predictions than considering only k = 3 PC’s.

From this we might infer that describing the data set by & = 8 PC’s we
include into the description a part of random noise which has added to the

given data set some particular features which are not likely to appear in another
sample.

For our data the model is much more complicated because the solar activity
1s a nonstationary process changing according to an eleven-year cycle. Both our
data sets I and II refer to the time interval very near to the maximum of the solar
eleven-year cycle (end of 1989 year). However, the structure of the interrelations
among characteristics of solar active regions has changed to some extent in this
time interval (see Jakimiec and Bartkowiak (1994) for more details). Therefore,
our predictions performed for the PC’s of the foreign data set could be bad. We
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might hope that making predictions for intervals being more close in time to the
base data set we would obtain quite satisfactory estimates of flare activity. This
problem needs further investigation.

Cuadras and Arenas give one statistical test, permitting to judge the sta-
tistical significancy of the retained PC’s. The test works under assumption of
normality. Our data are not normal and, therefore, we did not apply the mentio-
ned test. Perhaps an evaluation of the statistical significance of the retained PC’s
by a kind of resampling methods would be more suitable in these circumstan-
ces.

From computational point of view the distance-based regression is much more
difficult to carry out. The algorithm we have used works with the lower triangle
of a square matrix of size nxn simulated in an one-dimensional array and to
compute the eigenvalues and eigenvectors the whole structure has to be kept in
memory. Our program can deal mostly with n = 130 data-items (individuals).
An analogous program from MULTICUA can deal with perhaps n = 160 data-
items. With larger number of data vectors special computational methods are
needed. This is a disadvantage of the distance based methods.

Recently we have learned that Cuadras ef al. (1993) established another
algorithm for identifying the relevant principal coordinates. In principle, the
new algorithm does not require the evaluation of all eigenvectors of the inner
product matrix B and therefore it is more economic.

In any case the numerical obstacles can surely be surmounted. The most im-
portant is the solution which seems, in the case of the distance-based regression,
to be a very general one describing the intrinsic features of the data conside-
red.
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