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1. INTRODUCTION. .

The concept of canonical variates (coordinates) was introduced in an early paper
by the author (Rao (1948)) for graphical representation of taxonomical units charac-
terized by multiple measurements. This was, perhaps, the first attempt to reduce high
dimensional data to two or three dimensions using an objective criterion for purposes
of graphical displays. Since then, graphical representation of multivariate data for
visual examination of clusters, outliers and other structures in the data has been an
active field of research. Some of the developments are biplots (Gabriel (1971), Gi-
fi (1990), Gower (1993), Greenacre (1993)) multidimensional scaling (Kruskal and
Wish (1978)), correspondence analysis (Benzécri (1992). Greenacre (1984)), Cher-
noff’s faces (Chernoft (1993)) and parallel coordinates (Mahalanobis, Mazumdar and
Rao (1949), Wegman (1990)). Cavalli-Sforza (1991) uses canonical coordinates (va-
riables) in interpreting the evolution of human populations.

The object of the present paper is to briefly review the concept of canonical
coordinates as originally introduced in 1948 and later elaborated in Rao (1964, 1979,
1980, 1985) in the light of modern developments and present an alternative to the
current practice of correspondence analysis, which seems to have some attractive
properties.

In Section 2 we consider the general problem of transforming the points of a p-di-
mensional vector space endowed with a specified inner product to a lower dimensional
Euclidean space with the usual definition of inner product and distance. The solution
to the problem is considered in a more general set up than what is possible through
the use of Eckart and Young (1936) theorem. In Section 3, some measures are
introduced to assess the loss of information in reduction of dimensionality. The role
of biplots and their interpretation are also discussed. An example with continuous
measurements is considered in Section 4. An alternative to correspondence analysis
applied to contingency tables based on Hellinger rather than the chisquare distance
is also given in Section 4. Some results on optimization problems and chi-square
goodness-of-fit tests are discussed in the Appendix.

2. REDUCTION OF DIMENSIONALITY

The problem we consider may be stated as follows. Let X '= (X; :---: X,,) be
a p xm data matrix, with the i-th column vector X; representing measurements of
p variables made on the i-th population (individual or unit). The column vector X;
will be referred to as the i-th population profile (PP). The PP’s can be represented as

m points in a p-dimensional vector space R” with a specified inner product and the
associated norm



2.1 (x,y) = XMy, x,yeR’
(2.2) Il = (xx)'? xerr

where M is a positive definite matrix. We may call this the Mahalanobis or M-space.
In practical situations, it may be necessary to attach a weight w; > 0 to the i-th PP,
the exact use of which will be detailed in the following discussion. We represent the
vector (wy,..., wp)' by w and the diagonal matrix with w; as the i-th diagonal element
by W. The M-space with weight as an additional dimension will be referred to as
WM-space. [In our treatment we consider W as a general positive definite matrix to
cover more general applications].

The problem is to find a & X m matrix
(2.3) Y= ¥y)

with k < p for representing the PP’s in a k-dimensional Euclidean space (E*) with
the usual inner product. X'y for x,v € EX, and the k-vector Y; as the profile of the
i-th population, in such a way that the relative positions of the PP’s in the M-space
(in terms of distances between profiles) are preserved to the extent possible in EX.
For this purpose, we need to have a criterion for measuring the loss of information
in reducing the dimension of the profile space. by minimizing which we obtain an
optimum solution for (2.3).

The relative positions of the PP’s in the M-space can be described by what may
called a configuration matrix

(2.4) C= (X =&)Y M(X ~&1') = (X, ~ &) M(X; —)) = (<)

where & is some chosen reference (profile) vector, 1 is the column vector of unities
and the ¢;;'s represent the distances and angles between profiles as explained in the
Figure 1.
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Figure 1.
Configuration of the profiles in M-space (d; = \/c;;, didjcos8;; = c;j)
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The corresponding configuration about the origin in the reduced space E* is Y'Y.
The problem then reduces to minimizing

(2.5) ic-y'r|

with respect to Y, a k x m matrix as defined in (2.3), for a suitably chosen matrix
norm. The following theorem provides the solution.

Theorem 1

Consider the s.v.d. (singular value decomposition)
(2.6) M'7HX =YW = UV + L+ MUY,

with singular values A; > X, > ... > &,,, where M'/? and W'/? are symmetric square
roots of M and W. Then the choice

MViwo2

(2.7a) Y=Y, = 5
MV W2
or conventionally written in the transposed form

(2.7b) MWy w2y, MWy,

.....

where the components of the i-th m-vector are the i-th canonical coordinates (i.e., the
coordinates in the i-th dimension of the reduced space) for the different populations,
minimizes (2.5) for any (W.W)-invariant norm as defined in Note 2.1. We call these
coordinates the canonical coordinates for populations or profiles (CCP).

The result (2.7a) follows from Theorems A.1 and A.2 given in the Appendix.

Note 2.1.  (A.B)-invariant norm of an m x n matrix is the usual norm (satisfying the
postulates of a norm) with the additional property

(2.8) [|IC-D||=||-|| forany C,D such that C'AC=A,D'BD=B

where C is an m X m matrix, D is an n x n matrix, and A and B are positive definite
matrices of orders m and n respectively. This is a generalization given in Rao (1980)

of a unitarily invariant norm defined by von Neumann (1937) with A and B as unit
matrices.

Note 2.2. In our applications. we indicate some choices of the reference vector &.

However, we note that a further minimization of (2.5) with respect to & leads to the
choice



(2.9) E=(1'w1)'xwi

where 1 is the column vector of unities.

Note 2.3. Using the notation

g
|

Diag(A,....A)
U(,') = (UlI...IU,‘)~V('-):(V1;.“;VI.)

we may write the solution Y given in (2.7a) in the concise form

(2.10) Yoy = A(k,v('k)w—'/?.

Note 2.4. In the expression (2.6), a symmetric square root of a positive definite
matrix is used. It can be computed in a simple way as follows. If A is a positive
definite matrix of order p with the spectral decomposition

A=ZAQi0 = QA
where 0 = (Q, : ...: 0p), then

RS
=
v
|

A 0:0; = OAQ'
(2.11) AT = Tyl =oAL

We may look at the problem in a slightly different way by defining what is called
the dispersion matrix between profiles

(2.12) B=(X—-EIYW(X =E1") = (b))

where b;; is the weighted variance of the i-th variable and b;; is the weighted covarian-
ce between the i-th and j-th variables across the profiles. Consider an approximation,
Z; € R? to (X; — &), with the restriction that Z,,.. ., Z,, lie in a k dimensional subspace
of RP, in which case we have the representation

(2.13) Z=(Z :.... Zy) = AC

where A is a p X k matrix whose columns span the subspace and C is a k x m matrix.
Without loss of generality we may choose A to satisfy the condition A’MA =1 (i.e.,
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the columns of A are orthonormal in the M-space). The dispersion matrix between
profiles in the reduced space is ACWC'A’, and we choose A and C such that

(2.14) |B—ACWCA'||

is a minimum for an appropriate norm of the matrix. The solution is given in Theorem
2.

Theorem 2
Consider the same s.v.d. as in Theorem 1
M'A(X —E1 YW = MUV + ...+ WU,V
Then the optimum choice of AC which minimizes (2.14) for any (M, M)-invariant
norm is
(2.15) ACyy = M~ U WV + ...+ MUVOW™/?

where the suffix (k) is introduced to indicate the dimension of the reduced space. We
may choose

A = MVRU LUy =M VRY,
INA e .
(216) . C(k) = :A(k)V('k)W_l/z.
}\kVAfW"/Z

The results follow by applying Theorems A.1 and A.2 given in the Appendix.

Note 2.5. We may represent the profiles by plotting the columns of C in a k-

dimensional Euclidean space;, which is the same solution as that obtained in Theorem
1.

A geometric approach to the problem of reduction of dimensionality is to fit a
k-dimensional plane to the data. A set of m points on a k-plane can be written as

(2.17) El'+AC
where A is a p x k matrix and C is a k X m matrix. We determine A,C,& such that
(2.18) IIX —&1' = AC||

is a minimum for a suitably chosen norm. The solution is given in Theorem 3.
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Theorem 3

Consider the same s.v.d. as in Theorem 1. Then the choices of A and C as in
Theorem 2 and & = (I'W1)~'XW1 as in (2.9) minimize any (M,W)-invariant norm
of (2.18).

The result follows by a direct application of Theorem A.1 of the Appendix.

Note 2.6. We may also look at the problem in some other ways. Let T be a kx p
matrix providing a transformation of the column vectors of X to Y =TX in a k-
dimensional space with the induced inner product matrix TM~!T’. The squared
distance between the i-th and j-th protfiles 1s

(2.19) D} = (X, = X)) M(X; - X,)
in the full space, and
(2.20) Dfjyy = (Xi= X)) T(TM™'T") ™' T(X; - X))

in the reduced space. By definition Df/.(k) < D,»zl.. We may then choose T by minimizing
some function of the differences or ratios of Dy; and D:“j(k).

One of the functions suggested by Rao (1948) was the difference in the weighted
sum of all possible differences

221 EZwiw (D}, = D)
which leads to the same solution for ¥ = TX as in Theorems 1, 2 and 3.

Another method is to choose 7 by maximizing the minimum of ij(k) over all { and
J as suggested by Eslava-Gomez and Marriott (1993), or by maximizing the minimum
. 3 ol .
of the ratios D,.j(k)/Dij. Bolh these methods are computationally very complex, but
can be managed when p is small.

Note 2.7. The choices of M and W as inputs in the analysis for canonical coor-
dinates need some discussion. The choice of M is related to the distance measure
between profiles appropriate-to a given investigation. In taxonomical classification,
M is generally chosen as the inverse of the variance-covariance (dispersion) matrix
of the measurements on units within taxa leading to Mahalanobis distance (see Rao
(1945, 1947)). The matrix W is taken to be diagonal with the i-th diagonal element
w; proportional to the number of individuals sampled from the i-th taxa to estimate
its profile. For a chosen M, the configuration of the profiles in the reduced space will
depend on W, but is likely to be robust provided the w;’s are not widely different.
In the study reported in Rao (1948), all the w;’s were chosen as equal although the
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sample sizes for different populations were different. However,.the choice of w;’s as
proportional to sample sizes enables us to test hypotheses on goodness of fit of lower
dimensional planes to the observed protiles. For details. the reader is referred to Rao
(1973, pp. 556-560, 1985).

If we desire that the configuration of a subset of profiles to be better preserved
in the reduced space than the others. then we have to give bigger weights to those
profiles.

Note 2.8. In many situations we have a data matrix X giving the measurements of
p variables made on m individuals without any further information to guide us in
the choices of the M and W matrices. In such cases, the usual choices of M and W
are the unit matrices and the resulting canonical coordinate analysis is the Principal
Component Analysis (PCA) introduced by Hotelling. Some characterizations of the
principal components and their applications are given in papers by Rao (1958, 1964,
1987). It is also the practice to apply PCA on CX. i.e., after a suitable scaling of the
measurements. One choice of C is a diagonal matrix with the i-th diagonal element

-1/2

ci=s; '~. where s is the i-th diagonal element of the matrix

(X = X1')(X - X1').

This procedure is equivalent to using the canonical coordinate analysis choosing
M = C and W =[. Another possibility which has not been considered before is the
choice, ¢; = 1/m; where m; is a measure of location such as the mean or median of
the measurements on the /-th variable.

Note 2.9. A more general problem not considered in this paper is as follows. The
basic space is somewhat general with a specified nonnegative proximity index between
any two points. Given a set of points with the matrix of proximity indices between
points, the problem is to transform the points to a low dimensional Euclidean space
such that the inequality relationships between proximity indices are maintained to the
extent possible in the corresponding Euclidean distances. Such a transformation is
achieved through the algorithm for multidimensional scaling as developed by Kruskal
and Wish (1978).

3. LOSS OF INFORMATION

The representation of the PP’s in a lower dimensional space will entail some loss
of information depending on the object of statistical analysis. However, we provide
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some general criteria for assessing the amount of distortion in the configuration of
the profiles due to reduction of dimensionality.

In Theorems 1 and 2 of Section 2. it is shown that the best approximation to X
in the reduced space is

3.1) » X =81+ M UG A VW

so that the matrix

(3.2) Dy =X=X=M" o U Vi + o+ MU VW2,

gives a complete account of the errors in individual profiles due to reduction.
The configuration of the profiles in the reduced space is

(3.3) Ciy = W2V AL Vi W2

so that the matrix

(3.4) D2 =Clpy = Cpy = WAL Vie Vi) + -+ RV, VW2

measures the distortion in the configuration. where C,y = C as defined in (2.4). An
overall (weighted) measure of loss of information is the ratio of

(3.5) race. W'ED,W!E =00+ L+ AL

to the total variation (A] +...+4;). which can be written as
k bl hl

(3.6) L= (AR,
1 i

It is more important to assess the distortions in the inter profile squared distances.
The matrix of these squared distances denoted by S can be computed from the con-
figuration matrix C using the formula (A 1.16) given in the Appendix as

3.7) S=cl'+1c=-2C

where c is the vector of the diagonal elements of C. The corresponding matrix in the
reduced space is

(38) S(k) =C(k)l,+ lcl(k)—ZC(k)
so that the matrix

(3.9) D3 =8-Sy =(dj;)



measures the deficiencies in the distances due to reduction of dimensionality. An over
all measure of deficiency is

(3.10) IZwiwid, =M+ ...+ A
which is the same as in (3.5).
The dispersion matrix between profiles in the whole space, as introduced in (2.12)
is
(3.11) B=(X-31"W(X =31 =(b;)
while the corresponding matrix in the reduced k-dimensional space is

(3.12) By =M™ U A Ul M™ 2 = (by)-

The proportion of the between profile variance in the i-th variable explained by
the first & canonical variates (coordinates) is

(3.13) bl‘l’(/\‘)/b“‘ r=1...., p.

For an interpretation of the canonical coordinates in different dimensions it would
be useful to compute the proportion of variance in each variable explained by each of
the canonical variates, i.e., to obtain a decomposition of (3.13) in terms of canonical
variates. For this purpose. we introduce the matrices

(3.14) E, = M 'PogU, . AUp) = (ei)
(3.15) Ex = (e/\/bi) = (fi))

where bj; is as defined in (3.11). Let Ej) be the matrix obtained by retaining only
the first k columns in E; for i=1,2. Then it is seen that

(3.16) E\E\ =B E\((E\, = B

Let us consider the matrix E| ;) and define what may be called canonical coordi-
nates for variables (CCY) in k& dimensions as follows.

Table 3.1.

Canonical coordinates for variables

Variable dim! dim2 --- dimk
1 Y ey ey
2 e €n ey
p Cpy €pa T €py

(98]
ro



If we plot the variables as points in E* using the row coordinates in different di-
mensions, then the scalar products of the vectors representing the variables are the
elements of By, the best k-dimensional approximation to B.

There is some advantage in plotting the variables using the standardized coordi-
nates (f;;) defined in (3.15) as shown in Table 3.2.

Table 3.2.

Standardized CCV's und the variance explained by each canonical variate

Standardized Proportion of variance
Variable coordinates explained total
diml...dimk dimI...dimk
| fu o T o pWjt
P fpr o Tk o Jpk zf,z;,

The magnitudes in the right hand block of Table 3.2 indicate the influence of different
variables in each dimension (canonical variate) in the reduced space. This may enable
us to associate each dimension with certain variables. '

We may plot the variables using the standardized CCV’s in the same chart as the
canonical coordinates for the profiles. It is seen that all variable points lie inside the
“unit sphere in EX, and the variables close to the surface of the sphere have greater
influence on the canonical variates.

It may also be mentioned that it is the usual practice in a biplot to represent the
i-th variable as a directed line using the direction cosines proportional to the i-th row
elements in the matrix

(3.17) Ejy=M"Y3U .. Uy

in which case the projections of a profile point in these directions are proportional to
the approximate coordinates of the profile in the original space (see Gabriel (1971)
and Greenacre (1993)).

Note 3.1. 'We may consider the k columns in Table 3.1 of the CCV’s as k points in
the p-dimensional variable space. These points were termed as typical profiles in Rao
(1964), in the sense that the variance-covariance matrix of the variables computed
from them provides the best approximation to that computed from all the original
profiles.
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Note 3.2. The standardized CCV'’s are not the coordinates for row profiles. They are
used for interpreting the CC’s of column profiles. If a representation of row profiles
is needed, we consider the matrix X’ with appropriate choice of the M and W matrices
(which may be different from those used for column profiles) and repeat the analysis
indicated in (2.6) — (2.7b).

4. APPLICATIONS

4.1. Continuous measurements

In practical applications, we have at least two types of data matrices, one where
the profiles are vectors of measurements on continuous variables and another where
the profiles are vectors of relative frequencies of attributes. We discuss these two
cases with some examples.

Table 4.1.1 gives the sample sizes and mean values of 9 anthropometric measure-
ments made on samples of individuals from 17 populations. This is our data matrix
X' of order m x p with m=17 and p=9. The mean values in each row of Table 4.1.1
represent a population profile which can be plotted as a point in a p-dimensional
vector space. (Note that in the Table 4.1.1. rows represent populations and columns
the variables). We would like to represent the populations in a lower (2 or 3) dimen-
sional space for a visual examination to find clusters and outliers and other structures
in the data. Besides the data. we need some other inputs to apply the methods of data
reduction developed in the previous sections.

First is the choice of a metric or an inner product in the vector space of profiles,
in terms of which the configuration of a set of profiles can be described. The choice
naturally depends on the object of investigation. In the context of anthropometric
measurements a natural choice is the Mahalanobis distance (see Mahalanobis (1936)
and Rao (1948)). If X! and X;- are the row vectors (mean values) representing the pro-
files of the i-th and j-th populations respectively, then the square of the Mahalanobis
distance between populations / and j is

X - X))z (X - X))

where X is the common (or the average) variance-covariance (dispersion) matrix of
the variables within a population.  We may choose M = Z~!. In the above example
we have samples from each population with a total number of 2215 individuals.
We use MANOVA (or Analysis of dispersion. Rao (1973, p. 570)) to obtain the
decomposition of T the total sum of squares and products matrix of order 9x9 as



between B and within W. Dividing W by the degrees of freedom (2215-17=2198),
we have an estimate of X as shown in Table 4.1.2.

Table 4.1.2.

The estimated variance-covariance matrix X within populations

st sh nd nl hl /b bb hb nb
st 329476 10.7434  1.7820  3.9658 10.2211  4.8894 7.6002 3.6472 3.1023
sh 10.2400  1.1726 24304 5.5989 3.7782 4.3895 2.9794 0.972]
nd 3.0625  1.7824  1.7752  0.8527 1.2624 1.0301 0.5123
nh 12,2500 4.0610  1.5627 29687 2.7326 0.3940
hl 43.5600 5.8729 8.4397 5.8865 3.2737
fb ’ 15.3664 8.8511  7.8692 1.8446
bb 20.9764 11.1438 3.2122
hb 20.2500  1.6341
nb 6.6049

Second is the choice of the weights to be attached to the profiles. A natural choice
of the weight to be attached to the i-th population is its sample size n; expressed as
a proportion of the total sample size n (w; = n;/n). Such a choice may not always
be the best. especially when the sample sizes are widely different, although there is
an advantage when tests of significance are also considered. (In an earlier analysis,
Rao (1948) used equal weights although the sample sizes were different. Usually the
reduced configuration is robust to different choices of weights).

Choosing M~' =% as in Table 4.1.2. and w; = ni/n, ie.,

2215W = diag(85,92. 139. 168, 149. 124, 113, 67, 94. 172, 57, 191.
158, 100, 153. 156, 197)

where the numbers are the sample sizes, we compute the s.v.d. of

STIx—El)w!? = MUV + .+ MU,V

with & = XW1/1'WI1. The first three canonical coordinates as defined in (2.7) are
as shown in Table 4.1.3. The three columns in the table are the vectors A, W~!/2y, |
MW=V, and LW—1/2v;,

The squares of the singular values are 2165.6, 1012.2, 478.1, 265.5, 207.6, 93.9,
64.5, 38.6 and 17.0 with a total of 4343.1. The first three canonical coordinates
explain about 84% of variation between populations. Figure 2 gives a plot of the first
two canonical coordinates



Table 4.1.3,

Canonical coordinates in three dimensions

Group dim 1 dim 2 dim 3
B, 1.505584255  0.151968922  0.49580195
B, 1.268677020 —0.008997802  0.43108765
C 0.376888549  1.864144347 —1.05099680
M 0.271688813  0.739815783  0.04093115
Bh 1.497884705 —0.638438490 —0.23425360
H 1.188939615 —0.741844231 —0.08910818
D 0.458655511  0.268433534  0.63562071
A 0.962270474 —0.186013502  0.41809923
Ay 0.570135707 —0.064868650  0.24783429
As 0.352468454 —0.066568893  0.18233164
Ay —0.006945018  0.191180399  0.17306344
Th —0.301523213 —1.119103947 —0.96252679
Ch —0.503912465  0.368649078  0.29020494
T, —1.306812703 —0.088500525  0.11166126
T —1.525798049 —0.125746569  0.20196936
T; —1.412895439  0.197121678  0.11349265
T, —1.125431499 -0.338872721  0.01751354
% Variance
explained 49.86 23.30 11.00

dim2
0
dim3

dim1

Figure 2.
Configuration of canonical coordinates for caste groups and variables. The coordinates
in the third dimension for the caste groups are represented on a separate line.
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The standardized first three canonical coordinates for the variables as defined in
(3.15) and the between group variance in each variable explained are given in Table
4.1.4. They are the column vectors A|A™'Z!/2U; MA~IZY/2U, and A;A~'E!/ 2y,
where A is the diagonal matrix formed by the square roots of the diagonal elements
of the matrix (X —E1)W(X -E&1")".

Table 4.1.4.

Standardized CC's for variables and between group variance explained

Variable dim 1 dim 2 dim 3 % variance
st 0.56447484 —0.04964491 —-0.02136700 32.15530
sh 0.91478661 —0.24173510 —0.03048027  89.61995
nd 0.83822736  0.41848655  0.25011364  94.03129
nl 0.77824697  0.28621522 —0.43125314  87.35668
hl 0.40934124  0.62262950 —0.22874285  60.75510
fb 0.02029308  0.72195951  0.43410258  71.00824
bb 0.72821282 —-0.12153872 —0.02456127  54.56688
hb 0.51704122 —0.48947063  0.60153126  86.87530

nb —0.82527584 —0.27455517  0.11745159  77.02556

The first two CC’s for the variables are plotted in the same Figure 2. It is seen that
they all lie within the unit circle. The nasal measurements (nl, nd and hb) and sitting
height (sh) are close to the circumference of the circle indicating that they are well
represented in the first two CC’s for the populations.

Note 4.1. A two dimensional representation may not show the exact relative po-
sitions of the populations in the original space but the distortion may be large in
particular cases. In general it will be wise to take into account the differences in
the third as well as in the higher dimensions while interpreting the distances in the
two dimensional representation. An innovation in Figure 2 is the representation of
the coordinates in the third dimension on a separate line, which shows the additional
differences among the groups. [Note that the square of the distance between any two
groups in the three dimensional representation is the square of the distance in the two
dimensional representation plus the square of the difference in the coordinates of the
third dimension.]

A general recommendation is to consider a two dimensional plot supplemented
by representation of the points in other dimensions on separate lines as parallel coor-
dinates (see Wegman (1990) for details).
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4.2. Two way contingency tables

We consider dichotomous categorical data with s rows and m columns and n;;
observations in the (i, j)-th cell. Define

m S om

N = (njj),n; = Zn,, n;= Zn,, n~zzn,,

R = Diag (nl,/n,...,n&/n , C=Diag (n/n,...,nn/n)

P -+ Pijm
4.2.1) P=n"'NC"'= : : . column profiles,
‘ Py te p.\'|m
qir - 4|l
(4.2.2) Q=n"'R"'N= . : , row profiles
q) v qm[.\' ‘
p=R1,g=Cl.

The problem is to represent the column (row) profiles as points in EX k < s, such
that the Euclidean distances between points reflect specified affinities between the
corresponding column (row) profiles.

The technique developed for this purpose by Benzécri (1992) is known as cor-
respondence analysis (CA) which can be identified as canonical coordinate analysis.
For instance, for representing the column profiles by this method, one chooses -

(4.2.3) X=PM=R"'W=cC

and applies the analysis described in Theorem 1 (equation (2.6)). Thus one finds the
s.v.d. of

(4.2.4a) R™V2(P—p1)C'? = MUV + -+ MUV,

giving the coordinates for the column profiles in EX

(4.2.4b) Alc”/?vl,xzc—‘/?vz,...,xkc-‘ﬂvk

where the components of i-th vector are the coordinates of the profiles in the i-th
dimension. The standardized canonical coordinates in E* for the rows, as described

in (3.15), obtained from the same s.v.d. as in (4.2.4a) are

(4.2.4¢c) MAT'RV2UL MAT IR, AT RV,
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where the components of the i-th vector are the coordinates of the rows in the i-th
dimension and A is a diagonal matrix with the i-th diagonal element as the square
root of the i-th diagonal element of the matrix

(4.2.4d)
RP(UW + -+ KUUDR'? = (P— p1')C(P = p1)'.

The coordinates (4.2.4¢) do not represent the row profiles but are useful in inter-
preting the different dimensions of the column profiles. The coordinates for repre-
senting the row profiles in correspondence analysis are given in (4.2.6¢).

Implicit in this analysis is the choice of measure of affinity between the i-th and
Jj-th profiles as the squared distance

4.2.5) 2o i)

)

(Pyji — Pyj)?
.o + ————————
P Ps -

which is the chisquare distance. The squared Euclidean distance in EX, the reduced
space, between the points representing the i-th and j-th profiles is an approximation
to (4.2.5). Thus the clusters we see in the Euclidean representation is based on the
affinities measured by the chisquare distance (4.2.5).

Why should one choose the chisquare distance to measure the affinities between
profiles? Some of the advantages mentioned by Benzécri and Greenacre are as follows.

1. Note that the expression in (4.2.4a)
(4.2.6a) R—‘/Z(p_ pl’)C'/z _ Rl/z(Q_ lq’)C“Vz 7

so that if we need a representation of the row (as population) profiles in E*, we use
the same s.v.d. as in (4.2.4a)

(4.2.6b) RV Q- 14)CV2 = MUV + -+ MUV!
leading to the row (population) coordinates
(4.2.6¢) MR™V2U, RV

so that no extra computations are needed if we want a representation of the row
profiles also. In correspondence analysis it is customary to plot the points (4.2.4b)
and (4.2.6¢) in the same chart. Then the standardized coordinates for the columns (as
variables) are

(4.2.6d) MATICRY AT C Y,
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where A is a diagonal matrix with the i-th diagonal element as the square root of
the i-th diagonal element of (Q — 14')'R(Q — 14).

2. It is easy to see that

nAT+--+A7) = nuace TT'. with T as in (4.2.6a)

22 (mij=npiq;)*

npiq;

which is the Pearson chisquare statistic for testing independence between the attributes
in a contingency table. Thus the computations involved in CA automatically allow us
to test for independence. and also test for the dimensionality of the space of profiles
using statistics of the type

4.2.7) NG+ A= 1.2,

N

as discussed in Rao (1973, pp. 556-560).

3. CA is only an exploratory data analysis to examine the configuration of row and
column profiles in a general way, so that a particular convenient choice of the distance
measure can serve the purpose.

On the other hand, there seem to be some drawbacks in using the chisquare
distance.

1. The chisquare distance (4.2.5) is not a function of the i-th and j-th column
profiles only. It involves the marginal profile which is a weighted average of
the individual column profiles. The weights depend on the observed numbers
of individuals in the column categories. These numbers may not have any
relevance to the problem under study, especially when the columns represent
different populations from each of which some individuals are chosen and clas-
sified according to row categories. In such a case the marginal profile depends
on the actual sample sizes chosen or realized for different populations. The
examples discussed in the sequel show that the derived configurations in the
reduced space may be sensitive to the sample numbers.

2. The marginal profile depends on the set of populations included in CA. The
CA’s based on a given set of populations (S;) and an extended set of popula-
tions (S5,,5,) may provide different configurations to the subset S| as shown in
Example 4.2.1.
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3. There is no particular advantage in plotting the row and column profiles in the
same chart. Indeed one could use different distance measures for column and
row profiles and study configurations of the column and row profiles separately.

4. Since the chisquare distance uses the marginal proportions in the denominator,
undue emphasis is given to the categories with low frequencies in measuring
affinities between profiles.

An alternative to the chisquare distance which has some advantages is the Hellinger
Distance (HD) between the i-th and j-th column protiles defined by

(4.2.8) diz,' =(/P1i— \/PW): ot /Py — \/P_\-|_,')2

which depends only on the i-th and j-th column profiles. In such a case, the Eu-
clidean distance in the reduced space between the i-th and j-th column profiles is an
approximation to (4.2.8). For the derivation of canonical coordinates of the column
profiles (considered as population) we choose

VP o /Plim

X = . ’ . .
v p.\'|l s vV p.\'lm
4.2.9) M = I W =C =Diag (n/n,...,npn/n)

and consider the s.v.d.

(4.2.10) (X =&1NCY2 = UV + -+ MUV
We may choose &' = (§;..... E,) as
(4.2.11) & = Vpi=+ni/n. or

I

(4.2.12)

—1 .
= /pip o /Pim)-

The canonical coordinates in EX for the column profiles choosing € as in (4.2.11)
or (4.2.12) are

(4.2.13a) ySYontyEa VO WontVes TANNNNY Wont V21

where the components of the i-th vector are the coordinates of the m column (po-
pulation) profiles in the i-th dimension. The standardized coordinates in E* for the
variables, i.e.. the row categories. obtained as described in (3.15) from the same s.v.d.
as in (4.2.10) are

(4.2.13b) MAT UL MAT UL, L AT,
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where A is a diagonal matrix with the i-th diagonal element as the square root of the
i-th diagonal element of

(4.2.13c) MU + -+ RUU = (X -1 C(X -E1'Y.
The s components of A;A~'U; in (4.2.13b) are the coordinates of the s variables
in the i-th dimension.

It can be shown that the statistic
(4.2.14) dn(AMf+ -+ A7)

is distributed asymptotically as chisquare on (s — 1)(m — 1) degrees of freedom to test
independence in the two way contingency table. Further, hypotheses specifying the
dimensions of the subspace in which the profiles can be represented can also be tested
in the same way as in (4.2.7) using the residual singular values.

The advantages in using HD between profiles are the following.

1. The measure depends only on the profiles of the concerned pair. It is not altered
when an extended set of profiles is considered.

2. The measure does not depend on the sample sizes on which the profiles are
estimated. '

3. If a representation of the row profiles is also needed we take X = sqrt(Q'), i.e.,
the elements of X are the square roots of the elements of Q' where Q is the
matrix defined in (4.2.2) and compute the s.v.d.

(4.2.15a) (X =n1")R'* =p A B+ +1,AB.
leading to the canonical coordinates for row profiles (considered as populations)
(4.2.15b) WR™2B R VB,. . WR™/B,.

The corresponding standardized coordinates for the columns considered as varia-
bles are '

(4.2.15¢) HIAL_IAI,LLQA;lAQ,...

where A, is a diagonal matrix with the i-th diagonal element as the square root of
the i-th diagonal element of

(4.2.15d) H%AIA,} +...+u2

N

AAL
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4. If we choose £ as in (4.2.11), then the matrix in (4.2.10) is

Yo VeI G LV LU |
(X -grc ( n n n)

which’is symmetric in { and j. Then, the same s.v.d. as in (4.2.10) could be used for
computing the canonical coordinates

MR™VPU MRV, MRTVPU,L

for the row profiles, as in the case of CA.

Example 4.2.1

Consider for example the data on smoking habits (sy,s7,s53) of different categories
of employees (A,B,C,D.E) given in Tables 4.2.1 and 4.2.2, one of which has data
on two additional categories of employees.

‘Frequencies

A B C
51 50 0
s 05 0
§3 0 0 1

Total 5 5 1

Frequencies
A B CDE
5 500 4 1
52 0501 4

3‘300100

Total 5 S 1 5 5

Table 4.2.1.

Total

Table 4.2.2.

Total

10
10

21

44

Profiles

A B C Average

1 00 5/11
010 5/11

0 0 1 1/11

I 1 1 1
Profiles

B C D E Average
0 0 8 2 10121
1 0 2 8 10721
010 0 1/21



The two dimensional representations of. the employee categories obtained through
correspondence analysis using the formula (4.2.4b) for the data in the above tables

are given in Figure 3, where the lower case letters are used for the data of Table 4.2.2.
We make the following observations.

1. The relative positions of A, B and C change when additional employee cate-
gories are introduced. although their individual profiles remain the same.

2. The profiles for A, B, C in Table 4.2.1 suggest that they are equally distant
between each other. and the correspondence analysis would have revealed this
if the sample size for category C had been the same as that for A and B.

Thus, with chisquare distances, there is instability of the configuration of the
populations in the reduced space with changes in the sample sizes and the addition
or deletion of populations.

The two dimensional representation of the employee categories based on Hellinger
distance using the formula (4.2.13a) is given in Figures 3 and 4. It is seen that the
graph based on Table 4.2.1 shows that A, B and C are equidistant from each other
and the graph based on Table 4.2.2 shows that the positions of A, B, C represented
by lower case letters are not changed when the additional categories d and e are
introduced. Thus, the use of Hellinger distance seems to provide a more satisfactory
solution.

<t -
o N A
E
° &
o - C C
e
B
o
-2 0 2 4
dim1
Figure 3.

Configuration of canonical coordinates based on chisquare distance (Lower case
letters are used when the analysis is based on all the categories).
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dim1,

Figure 4.
Configuration of canonical coordinates based on Hellinger distance (Lower case
letters are used when the analysis is based on all the categories).

Example 4.2.2

We consider the data (from Greenacre (1993)) on 796 scientific researchers clas-
sified according to their scientific discipline (as populations) and funding category (as
variables) as shown in Table 4.2.3.

Table 4.2.3.

Scientific disciplines by research funding categories

Funding category

Scientific discipline a b c d e Total

Geology G 3 19 39 14 10 85
Biochemistry B, 1 2 13 1 12 29
Chemistry c 6 25 49 21 29 130
Zoology Z 3 15 41 35 26 120
Physics P 10 22 47 9 26 114
Engineering E 3 11 25 15 34 88
Microbiology M, 1 6 14 5 11 37
Botany B 0 12 34 17 23 86
Statistics S 2 5 11 4 7 29
Mathematics M, 2 11 37 8 20 78
Total 31 128 310 129 198 796
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The canonical coordinates for the scientific disciplines (considered as populations) in
the first three dimensions and percentage of variance explained by each are given in
Table 4.2.4 for the analyses based on the chisquare distance (correspondence analysis)
and the Hellinger distance (alternative). The formula (4.2.6b) is used for the analysis
. based on chisquare and the formula (4.2.15a) for that based on Hellinger distance.

For Hellinger distance analysis, the central point is chosen according to the formula
(4.2.12).

Table 4.2.4.

Canonical coordinates for the scientific disciplines in the first three dimensions

Subjects Chisquare Distance Hellinger distance
Diml Dim2 Dim3 Dim| Dim2 Dim3
G 076401 302569 —.087749 —.031140 .167408 —.048245
B 179892 —.454996 —.151716 —.129374 —.242174 -.077614
C 037644 073353 042371 —-.021144 .040433  .028254
z —.327365  .102283  .064515  .138850  .045255 .056894
P 315552 1026997 108688 —.165340  .010679  .023844
E —.117495 —.291712 107330  .049451 —-.129906 .082901
M, 012766 —.109656 —.041435 —.004913 —.052588 —.008439
B, —.178695 —.038501 —.129055  .151404 —.036559 -—.108025
S 124638 014162 107190 —.066639  .011763  .052571
M, 106751 —.061316 —.175688 —.050307 —.037572 —.078006
% var. 47.20 36.66 13.11  45.87 34.10 16.57

The plots of the scientific disciplines (subjects) using the canonical coordinates
based on the chisquare and Hellinger distances are given in Figures 5 and 6 respec-
tively. The coordinates in the third dimension are plotted on a line on the right hand
side of the two dimensional plot. This will be of help in visualizing the plot in
three dimensions and in interpreting the distances in the two dimensional plot. Thus,
although B, and E appear to be close to each other in the two dimensional chart,
they are clearly separated in the third dimension. No additional distances in the third
dimension are involved in the case of P.C.5.Z and E.

It is of interest to note in this example that the configuration of the scientific
disciplines in three dimensions obtained by both the methods are very similar. The

percentage of variance explained in each dimension is nearly the same for both the
methods.
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Configuration of scientific disciplines using Chisquare distance (Correspondence
Analysis). :
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Figure 6.
Configuration of scientific disciplines using Hellinger distance (Alternative to
Correspondence Analysis).
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The standardized canonical coordinates for the funding categories (considered as
variables) are computed using the formula (4.2.6d) for the chisquare analysis and the
formula (4.2.15b) for the Hellinger distance analysis. These are obtained from the
same s.v.d. used to compute the canonical coordinates for the scientific disciplines.
Table 4.2.5 gives the standardized canonical coordinates for the funding categories,
a, b, c, d, e, using the two methods.

Table 4.2.5.
Standardized canonical coordinates for funding categories (variables) in the first three
dimensions
Funding . . . .
Chisquare Distance Hellinger Distance
category
diml dim2 dim3 %var diml dim2 dim3 %var
a 758 114 —.619 97.1 796 .164 —.573 98.9
b 535 728 —.137 835 438 766 —.008 77.9
c 583 352 694 94.6 501 327 759 934
d —426 331 —.172 9938 —.888  .358 —.285 99.7
e —.108 —.909 —-.081 99.6 —.088 —.978 —.159 989

The standardized canonical coordinates for the funding categories are plotted in
Figure 7 (for chisquare distance) and in Figure 8 (for Hellinger distance). It may
be noted that all the points lie within the unit circle. It is customary to represent
the canonical coordinates for the subjects and variables in one chart. We are using
separate charts in order to explain the salient features of the configuration of the
variables. The following interpretations emerge from the study of Table 4.2.5 and
Figures 7 and 8.

e
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S
|
) |
1.0 -0.5 0.0 0.5 1.0
dim1
Figure 7.

Configuration of funding categories using standardized canonical coordinates based
on Chisquare distance.
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Figure 8.
Configuration of funding categories using standardized canonical coordinates based
on Hellinger distance.

1. The configurations of the funding categories as exhibited by Figures 7 and 8
obtained by using chisquare and Hellinger distances are very similar.

2. All most all the variation in the funding categories a,d and e is captured in the
first three canonical coordinates of the scientific disciplines. A large percentage
of variation in b and c is explained by the first three coordinates.

3. The first dimension is strongly influenced by a,d the second dimension by E,e
and the third dimension by a,c.

Thus the use of standardized coordinates for variables enables us to interpret the
different dimensions in terms of observed variables. There are other ways of plotting
the coordinates of the variables as mentioned in the paragraphs below Table 3.2. Such
biplots having a different interpretation are discussed in Gabriel (1971), Gifi (1990),
Gower (1993) and Greenacre (1993).

Note 4.2. In computing the canonical coordinates based on Hellinger distance (HD)
using the formula (4.2.10), we chose the relative sample sizes as the weights to be
attached to the populations. We could have chosen an alternative set of weights if
we wanted distances between a specified subset of populations to be better preserved
in the reduced space than the others. In particular, we could have chosen uniform
weights for all populations. In fact such an option could be exercised if the sample
sizes of different populations were widely different. Unfortunately no such options
are available in correspondence analysis.
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Example 4.2.3

In the example 4.2.2. there was a perfect match between the plots based on
CA and HD. This probably demonstrates that the method of derivation of canonical
coordinates is somewhat robust to the choice of the distance measure as well as to the
weights. However the choice of HD provides as insurance against possible distortion
due to variations in sample sizes for the populations as the following example shows.

Table 4.2.6, reproduced from Gili (1981), gives the distributions of the pages de-
voted to different topics denoted by A.B.C.D.E.F and G in 20 books on Multivariate
analysis designated as a.b.....r. Gifi (1981) did correspondence analysis on the da-
ta and drew some conclusions based on the first three canonical coordinates which

explain a high percentage of variation.

Books

a

b

A

31
0

0
19
14
20
74
78
74
80
108
109
16
26
290
184
29
0

0
30

Table 4.2.6.

B

0
16
40
0
7
69
0
0
19
68
48
13
35
86
10
48
0
19

22

oy

128

C D E
0 0 0
54 18 27
32 10 42
35 19 28
35 22 17
72 33 55
86 14 0
80 5 17
33 12 26
67 15 29
4 10 46
517 39
69 24 0
60 6 48
6 0 8
82 42 134
0 0 41
56 0 39
45 42 60
90 28 48

Number of pages by topics

F

164
13
60

163

0

84
105

108

G

11
14

52
56
32
48
60

(o)

46

41

28

32

59



The first three canonical coordinates for the profiles of the books based on CA and
HD approaches are given in Table 4.2.7.

Table 4.2.7.

Chisquare Distance Hellinger Distance

diml dim?2 dim3 diml dim2 dim3

N

—1.10857 —0.61445 —0.33902  0.64632 0.36299  0.12879

0.07397  0.70254  0.25265 -0.01661 -0.48923 —0.12388
—0.21153  0.46054 —0.49228 0.10998 —0.42185 0.32822
—0.77795 —-0.11074  0.15556- 0.46658 —0.01597 —-0.10284

0.02781  0.40651 1.06135 —0.19193 —-0.15180 -0.45570

0.35780  0.69602  0.09284 —-0.37016 —0.29359 -—0.1445]
g —0.16412 —0.15719  0.46353  0.23979  0.16911 -0.35829
—-0.25023 -0.19626  0.39002  0.26103  0.14730 -0.23804
i 0.72788 —0.19452 —0.04749 —0.50899  0.14292  0.02936
. 0.68403  0.24337 —0.17956 —0.53320 -0.01242  0.04724
kK 0.02729 -0.36648 —0.44297  0.03996  0.21098  0.36189
[ 0.26802 —-0.44749  0.28287 —0.00524  0.27070 —-0.06481
m  0.02188 050893 0.51719 0.01506 —-0.19266 —0.34080
n 0.12052  0.48459 —0.19476 —0.04555 —0.20966  0.04945
0 1.08308 —1.32602  0.03206 -0.39476  0.66357 —0.00090
p  0.64959 —0.07081 —0.13268 —0.49299 0.09097 0.08510
g —0.98347 —-0.39273 —-0.25019 0.58910 0.21379  0.19442
-0.40006 032919 -0.33826  0.21605 -0.35929  0.28764
s —=0.74726  0.08101 —-0.00508 0.43349 —-0.30134 0.03139
t 0.56547  0.81454 —-0.35256 —-0.51167 —-0.27874 0.10162

a N S

~

~
-~

~

It may be noted that the total number of pages of a book depends on the font
size of the print, while its profile in terms of proportions of pages used on different
topics remain the same for all sizes. Table 4.2.8 gives the data on books having the
same profiles as in Table 4.2.6 with the total number of pages altered for the books
d.f.g,h.j and n.
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Table 4.2.8.
Number of pages by topics

Books A B C D E F G

a 31 0 0 0 0 164 11
b 0 16 54 18 27 13 14
¢ 0 40 32 10 42 60 0
d 190 0 350 190 280 1630 520
¢ 14 7035 22 17 0 56
f 10 34 36 17 28 0 16

g 740 0 860 140 0 840 480
h 780 0 800 50 170 1050 600
i 74 19 33 12 26 0 0
j 40 34 33 8 15 0 0
k 108 48 4 10 46 108 0
{ 109 13 5 17 39 32 46
m 16 35 69 24 0 26 41
i 1343 30 3 24 24 14
0 290 10 6 0 8 0 2
P 184 48 82 42 134 0 0
q 29 0 0 0 41 211 32
r 0 19 56 0 39 75 0
s 0 22 45 42 60 230 59
t 30 128 90 28 48 0 0

The three dimensional canonical coordinates based on CA and HD approaches are
given in Table 4.2.9. .Using the coordinates one can obtain the mutual distances be-
tween the books in the three dimensional reduced Euclidean space. Figure 9 gives
a plot comparing the squared distances between books based on CA using the data
of Tables 4.2.6 and 4.2.8. Figure 10 gives the corresponding plot for the squared
distances based on the HD approach. It is seen that the three dimensional repre-
sentation of the data of Tables 4.2.6 and 4.2.8 are more similar under HD analysis
than that under CA. The relative positions of the books are influenced by the font
size in printing when CA is used. although the profiles of the books are not altered.
There appears to be greater stability with the HD analysis which provides insurance
against different choice of sample sizes. Further, one can exercise the option of using
a common weight for all the books in the HD analysis when the differences in book
sizes are large.

n
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Distance based on original data

Figure 9.
A comparative plot of squared distances between all pairs of books in the reduced
spaces based on correspondence analysis.
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Figure 10.
A comparative plot of squared distances between all pairs of books in the reduced
spaces based on Hellinger distance analysis.
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Table 4.2.9.

Chisquare Distance

diml

—-0.62310
0.63345
0.90486

—0.36427
0.20621

1.23299

-0.16974

—0.18352

i 0.85607

1.35943

0.61122

QUL O S Q

S 0 R

B

m  0.58680
n 1.20448
o 047616
p 087199
qg -—0.44497
r 0.34209
—0.10036

1.87687

5%

~

5. CONCLUDING REMARKS

A general theory is developed for plotting high dimensional “population by varia-
ble” data, i.e. measurements made on a set of characteristics of given populations, in
a low dimensional Euclidean space. A first step in such a problem is the specification
of the basic metric space in which the populations can be represented as points using

0.32350

dim2

0.30413
0.41500
0.78379
0.36470
0.05647
0.45214
—0.27626
—0.18729
—0.49586
—-0.06808
0.01365
—0.41447
0.20860
0.51816
—1.60929
—0.26044
0.44631
0.56913
0.60181
0.57376

dim3

—0.53463
0.44316
—0.17802
—0.12611
0.54414
0.27035
0.25537
0.09783
-0.21672
0.07459
-0.60327
—0.39537
0.65792
0.07444
-0.73075
—0.37985
—0.57047
—-0.04981
-0.15749
0.28038
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Hellinger Distance

diml

—-0.35082
0.25096
0.22985

—0.23454
0.34853
0.59591

—0.08445

—0.07908
0.73058
0.77422
0.28646
0.23929
0.17707
0.32243
0.612006
0.72806

—0.27936
0.10278

—0.14779
0.78353

dim2

—0.04632
—0.37625
—0.60374
—-0.16742
0.01585
—0.20402
0.24917
0.11818
0.07206
—0.01788
—0.20830
0.02213
0.01371
—0.27238
0.41339
—0.03491
—0.25639
—0.49844
—0.45659
—0.24748

dim3

0.42925
—0.40565
—0.08540
0.01739
~0.32928
—0.28683
~0.09573
0.00148
0.07026
—0.04783
0.40764
0.24724
—0.36016
—0.09222
0.46017
0.09187
0.41829
—0.07991
~0.10069
~0.19823



the entire data, and a characterization of the configuration of the points in terms of
distances between points. The second is the development of methodology for trans-
forming the points from the basic space to a low dimensional Euclidean space with
the usual definition of distance preserving the configuration of points to the extent
possible. The choices of the basic space and the distance function between points
have to be made on practical considerations depending on the problem under inves-
tigation. A closed form solution is obtained when the basic space is a vector space
endowed with an inner product and the associated norm. Some examples are given
involving measurements on continuous and discrete variables.

When we have data in the form of frequencies of individuals of a population
under different categories of an auribute. a well known method for dimensionality
reduction for representing. say the populations, is correspondence analysis. The basic
space in this case is a vector space where each population is represented by the
vector of relative frequencies of the different categories of an attribute and distance
between vectors is defined by a chisquare type formula. Such a distance function
is not an intrinsic measure of difference between two populations as it depends not
only on the differences between their relative frequencies, but also on the average
relative frequencies computed from the set of populations under study. Thus the
configuration of any subset of populations depends on what other populations are
included in the analysis. and also on the relative numbers of individuals observed from
each population. An alternative approach of representing a population by the vector of
the square roots of relative frequencies and defining distance between two populations
by the Hellinger formula does not have the drawbacks associated with the chisquare
type formula. In addition. the new analysis has the same advantage of providing
tests of significance for homogeneity of the populations as in correspondence analySIS
based on the chisquare formula.

It may be contended that CA is meant to be used for the analysis of contingency
tables with dichotomized data using two attributes like hair color and eye color (as
originally demonstrated by R.A. Fisher), and not for the analysis of population by
variable data where anomalies of the type described in the paper may occur. However,
one finds in published literature more examples of the latter type of data analyzed
through CA. Further, even with attribute data, if the configurations of the column (or
row) profiles for two different populations (with possibly different marginal distribu-
tions) are to be compared, HD analysis is more appropriate than the CA. It is the
author’s opinion that the choice of a distance measure between populations (row or
column profiles) must depend on the nature of the data and the purpose of analysis.
Prescription to use a particular distance as in the CA may be misleading. Distance
measures other than the chisquare and Hellinger types may be more appropriate in
some situations. For a purely exploratory data analysis, it is possible that a wide
variety of distance measures reveal similar configurations of the populations in terms
of clustering and inter cluster relationships.
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Between the choices of chisquare and Hellinger distances, the latter seems to offer
some advantages, as the latter has similar theoretical properties as the former and in
addition it is defined as an intrinsic function of two population profiles independent
of what other populations are included in a study.

A recent technical report by Rios. Villarroya and Oller (1994) discusses the same
problem as in the present paper. viz.. simultancous representation of populations and
random variables. under the assumption of an underlying parametric model.

The method, referred there as Intrinsic Data Analvsis, is based on the Riemannian
structure given by the Fisher information metric and its corresponding distance, the
Rao distance. The statistical populations are viewed as points on a Riemannian man-
ifold and the random variables with finite expectation, as vector fields, namely, the
gradient of the random variable mean value, or, by integration. a bundle of curves on
the manifold.

Then, assuming certain additional regularity conditions, a reference point on the
manifold is selected as the statistical populations Riemannian center of mass, and
the points representing the populations and the curves representing the variables are
mapped. through the inverse of the Riemannian exponential map, into the tangent
space at the center of mass, which has a Euclidean vector space structure. Then,
classical dimension reduction techniques such as principal component analysis can be
used to obtain a low dimensional Euclidean space which allows an optimal population
representation. Finally, the curves in the tangent space are projected into the low
dimensional space obtained.

This method is applied to multivariate normal and multinomial distributions. In
the multinomial case, the Rao distance. p. between two populations py,...,p, and
qi,--..gn, 1s proportional to the Bhattacharyya distance

n
= darccos 2 VPidj

=1

which is a monotone transformation of the Hellinger distance, and thus this method
will share some properties with the latter.

APPENDIX

Al. Theorems on optimization.

Let A be an r| X r» matrix, X; be an r; x s; matrix of rank s, X, be an rp, X 5
matrix of rank s» and X; and X, be positive definite matrices of orders r; and rp
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respectively. Further let

(A 1.1) Po= XX
(A1.2) P o= Xo(Xh

be orthogonal projection matrices and
/2 2
F=3"11-P)All - PHzd
with the s.v.d. (singular value decomposition)

(A 1.3) F=MUV+. . +h,UnV. A >00=1....m

m:*

Theorem A.1

Let A.X|.X2.Z, and X, be as defined above. Then. for any (X,.%,)-invariant
norm |- ||, as defined in (2.8).

(A 1.4) min_||A = X|¥| — W2 X5 = T
TN R

with rank I' = r < min(r; —s|.r — 57) is attained at

(A 1S XYW, = PAYX:=(I-P)AP
(A 1.6) r o= 3o+ .+ 00V

where A;,U; and V; are as defined in (A 1.3).

For details of the proof. the reader 1o referred to Rao (1980. 1985, p-175), where
a number of applications of the above theorem are given.

Theorem A.2

Let B an r| x r, matrix. Then
(A 1.7) mCin||B'Z,B—C'C||
with rank C = s < rank B’ZIB is attained for any (Z,,Z,)-invariant norm at
(A 1.8) C=3"" VW)
where A; and V; are the singular values and vectors from the s.v.d.

(A 1.9) BRSOV + 4 AUV
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Proof
A direct application of Theorem A.l gives the optimum choice of C'C as
(A L10) cc=x"F vV + 2w
where 7»;?' and V; are from the spectral decomposition
(A 1.11) 2PBE BN = ViV + 0LV

which can be computed from the s.v.d. (A 1.9). From (A 1.10), it is seen that one
choice of C' is as given in (A 1.8).

|
Theorem A.3
Let X = (X; :...: X,y) be a p xm matrix with the m x m configuration matrix
(A 1.12) F=(X-EIYMX-81") = (fi;)

and the m x m inter square distance matrix
(A 113) D=(d,'/‘).([,'/'z(X,'—X,')IM(X,‘-—X/')

where M is a positive definite matrix and

(A 1.14) E=ZwX,.w; >0 and Zw; =1
Then
1
—=2F = (d,'j—d./'—([,',%-d,.)
(A 115) where d,‘. = ZWjél,',‘, d./‘ = ZW,'dj,' and d. = ZZw,»wjd,-,‘.
(i)
(A 1.16) D=fU+1f —2F

where f is the vector of diagonal elements of F.
. (i)

Trace WY2Fw!/2

Iwi(X; = &)'M(X; - §)
ZZW,‘Wjd,’_,‘ =d.

I

(A 1.17)
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where
W = Diag(w,,.... W)

The results (A 1.15). (A 1.16) and (A 1.17) are easy to establish.

A2. Homogeneity tests in a contingency table

Let n;; be the number of individuals belonging to category A; of an attribute out
of n; individuals sampled from population j for i=1,..., pand j=1,....m. Then

the data can be exhibited as a contingency table (population by attribute) with fixed
column totals.

Population by attribute frequencies

Auribute Populations Total
1 2 - m
A nyonp o Ny R
Ap Rpt Np2 = Hpm A
Total Ry N2 - Ny N,

Let m;; be the true proportion of individuals with attribute A; in populatlon Jj- We
would like to test the homogeneity hypothesis

(A21) 1t,-|[:Tt,-|::...=1t

using the statistic
(A22) H=43 S /pr - VR
[

where pij = nij/nj and ®; is an estimate of the common value m; of (A 2.1), i =
1,...,p. The statistic (A 2.2) based on Hellinger distance (see Freeman and Tukey
(1950), and Matusita (1965)) falls in the category of the power divergence tests

discussed in great detail by Read and Cressie (1988). The estimates of #; generally
recommended are

(1) the maximum likelihood (ML) estimate

(A 2.3) T, = z”‘_,-p,“/n” =n;/n.
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and

(i1) the minimum distance (MD) estimate

(Z”./ pi|j)~
/

(A2.4) o e —
2(2n,/Pij)”
oy

which ensure asymptotic %~ distribution on (p — 1)(m — 1) degrees of freedom for H.
We suggest another cstimate

(iti)  the unrestricted MD estimate

(A 2.5) = (X, /pr/n)’

which although does not satisfy the natwural restriction Y #; = 1, ensures the same
asymptotic distribution for A as in (i) and (i1) above. The only condition needed is
that n ; — e for each j. When &; as in (A 2.5) is used in H of (A 2.2), H ceases to
be in the class of power divergence tests.

All the stated results follow from the general theorems proved in Rao (1973, pp.
382-388) and Read and Cressie (1988), or simply by noting that

=2 (P—f‘):< \/IG)AH
A26 VR =M [y VP
( ) (Vp— V) P +\/%

which has the Pearson ¥ component as the dominant factor with the other factor
tending to 1/4 as p/ft — 1. We need only use the expression (A 2.6) for each term
in (A 2.2) to show the equivalence of H with Pearson’s xz.

Note 1. With the choice of the ML estimate (A 2.3) for &, the statistic H can be
written as

(A2.7) H= ZZ(VW‘ ninj/n.)
i

which is symmetric with respect to interchange of rows and columns. The H based
on the estimates (A 2.4) or (A 2.5) does not have this property.

Note 2. The choice of &; as in (A 2.5), which is used in the analysis of Section 4.2
seems to be appropriate even in tests of significance. For instance, a natural test for
homogeneity when m = 2 is

HRA

n|+na§’(Vp Vp"’

(A 2.8)
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which is equal to

P

r
(A 2.9 H=4[n, Y (/P — 1) +n2 Y (/Pin — V)]
|

i=1 1=
only when #; is as chosen in (A 2.5).

The research work of this paper is sponsored by the Army Research Office under
Grant DAAH04-93-G-0030.
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