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1 Poisson/gamma model

For simplicity of notation, we drop the argument xnxnxn in the limits of the credible interval, a(xxxn)
and b(xxxn), for the posterior distribution throughout the text.

1.1 Posterior distribution and properties

The corresponding likelihood function is

L(λ;xxxn) =
n

∏
i=1

e−wλ(wλ)xi

xi!
=

e−nwλ(wλ)sn

∏n
i=1 xi!

,

where sn = ∑n
i=1 xi and xxxn = (x1, . . . ,xn). If we consider a prior gamma distribution for λ, the

posterior distribution is

h(λ|xxxn) ∝ λsn e−nwλ×λθ0−1e−(θ0/λ0)λ

= λθ0+sn−1e−(nw+θ0/λ0)λ, (1)

which is a gamma distribution with parameters θ0 + sn and nw+θ0/λ0. The corresponding mean

and variance are, respectively,

E
[

λ
∣

∣xxxn

]

=
θ0 + sn

θ0/λ0 + nw
and Var

[

λ
∣

∣xxxn

]

=
θ0 + sn

(θ0/λ0 + nw)2
. (2)

Under the Poisson/gamma model each Xi follows marginally a negative binomial distribution

with mean wλ0 and parameter θ0, i.e., Xi ∼ NB(wλ0,θ0). Furthermore, Sn = ∑n
i=1 Xi ∼

NB(nwλ0,nθ0).

1.2 Obtaining the Bayes rule

Obtaining the decision d∗
n that minimizes the Bayes risk r(h,dn) is equivalent to obtaining the

one that minimizes the posterior expected loss, namely E
[

L(λ,dn)
∣

∣xnxnxn

]

. In our case, the posterior

expected loss is

E
[

L(λ,dn)
∣

∣xxxn

]

= γτ +
∫ ∞

0

(λ−m)2

τ
h(λ|xxxn)dλ.

The minimum of the integral in m is attained at m = E
[

λ
∣

∣xxxn

]

; then,

E
[

L(λ,dn)
∣

∣xxxn

]

= γτ +
Var

[

λ
∣

∣xxxn

]

τ
. (3)

To minimize the posterior expected loss in τ , consider

τ = tg(γ)
√

Var
[

λ
∣

∣xxxn

]

, (4)

for t > 0 and g(γ) a positive function in γ (Rice et al., 2008), then

E
[

L(λ,dn)
∣

∣xxxn

]

=
√

Var
[

λ
∣

∣xxxn

]

[

tg(γ)γ+
1

tg(γ)

]

.

Differentiating the expression in brackets with respect to t we obtain the minimum when t =
1/[γ1/2g(γ)], and replacing this value in (4) we obtain

τ = tg(γ)
√

Var
[

λ
∣

∣xxxn

]

=
1

γ1/2g(γ)
g(γ)

√

Var
[

λ
∣

∣xxxn

]

= γ−1/2
√

Var
[

λ
∣

∣xxxn

]

.



Another way to obtain the minimum is to differentiate (3) with respect to τ directly, set the

derivative equal to zero and solve it in τ . Thus, the Bayes rule corresponds to the quantities

which define the interval [a∗,b∗] = [m∗ − SVγ ,m
∗ + SVγ ], where m∗ = E

[

λ
∣

∣xxxn

]

and SVγ =

γ−1/2(Var
[

λ
∣

∣xxxn

]

)1/2. Then, the minimized posterior expected loss is

E
[

L(λ,d∗
n)
∣

∣xxxn

]

= γγ−1/2(Var
[

λ
∣

∣xxxn

]

)1/2 +
Var

[

λ
∣

∣xxxn

]

γ−1/2(Var
[

λ
∣

∣xxxn

]

)1/2

= 2(γVar
[

λ
∣

∣xxxn

]

)1/2. (5)

Given the posterior distribution of the Poisson/gamma model and (2), we obtain a closed expres-

sion for the minimized posterior expected loss. Also, since the posterior distribution is gamma,

we may easily compute the Bayesian coverage probability for a given interval.

1.3 Algorithm to obtain nnn

The choice of the set in which n varies is arbitrary. In general we consider n = 1,6, . . . ,491,496,

and for each value of n in this set the estimate of TC(n) is computed 10 times (also arbitrarily),

i.e., we obtain 10 estimates for TC(n). A possible algorithm to obtain the optimal sample size n

is

Step 1. Set values for λ0, θ0, w, c and γ, in addition choose a set in which n may vary.

Step 2. For each n, draw a sample of size M (e.g., M = 1000) of sn from a negative binomial

distribution with mean nwλ0 and shape parameter nθ0, then compute the respective

E
[

L(λ,d∗
n)
∣

∣xxxn

]

using (5), and finally compute the average of the M minimized posterior

expected losses. This value is the estimate of the minimized Bayes risk for the respective

n.

Step 3. For each estimated Bayes risk, add the respective cost cn and keep these values.

Step 4. With the values obtained in Step 3 and the respective values of n, fit a regression model

as stated in equation (7) of the article and compute the optimal n using expression (8).

2 Negative binomial/gamma model

2.1 Posterior distribution and properties

For the negative binomial model, the corresponding likelihood function is

L(λ;xxxn) =
n

∏
i=1

Γ(φ+ xi)

Γ(xi + 1)Γ(φ)

(

wλ

wλ+φ

)xi
(

φ

wλ+φ

)φ

=

[

n

∏
i=1

Γ(φ+ xi)

Γ(xi + 1)Γ(φ)

]

(

w

φ
λ

)sn
(

1+
w

φ
λ

)−sn−nφ

,

where sn = ∑n
i=1 xi and xxxn = (x1, . . . ,xn). If we consider a gamma prior distribution for λ, the

posterior distribution is

h(λ|xxxn) ∝ λsn

(

1+
w

φ
λ

)−(sn+nφ)

×λθ0−1e−(θ0/λ0)λ

= λθ0+sn−1

(

1+
w

φ
λ

)−(sn+nφ)

e−(θ0/λ0)λ,



which do not correspond to a known distribution. To bypass this problem, we use the Metropolis-

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) to draw samples from the posterior

distribution of λ. Specifically, we use the random walk Metropolis-Hastings algorithm through

the function rwmetrop of the R package LearnBayes (R Core Team, 2016). In each case, we

consider a burn-in of 100 iterations and a thinning of 10 or 15 with a final sample of size 900. We

inspect trace and autocorrelation plots for a fixed n = 5 when computing the optimal sample size

and we expect the same or better behavior for n > 5. The trace plots showed a random behavior

around a value and in the autocorrelation plots the autocorrelations for almost every lag are zero

(see Figure 1 for an example).

Given the posterior distribution of the negative binomial/gamma model and (5), we may eas-

ily compute an estimate for E
[

L(λ,d∗
n)
∣

∣xxxn

]

using a sample obtained via the Metropolis-Hastings

algorithm. Also, using this sample we may obtain an estimate for the Bayesian coverage proba-

bility associated to an interval as the proportion of values of the sample within the given interval.

2.2 Algorithm to obtain nnn

The choice of the set in which n varies is arbitrary. In general we consider n= 1,5,10, . . . ,590,600

for c = 0.001 and n = 1,3,5, . . . ,197,199 for c = 0.01. For each value of n in the respective set

the estimate of TC(n) is computed 3 times. In some cases where the fitted curve is not visually

satisfactory we consider a refined and/or smaller set for n in order to compute the optimal n. A

possible algorithm to obtain the optimal sample size n is described as follows.

Step 1. Set values for λ0, θ0, φ, w, c and γ, in addition choose a set in which n may vary.

Step 2. For each n, draw a sample of size M (e.g., M = 1000) of xxxn. The sample xxxn may be

drawn as follows: draw one value of λ from the prior distribution, given this value draw

a sample of size n of Xi, i = 1,2, . . . ,n from a negative binomial distribution with mean

wλ and shape parameter φ, then compute an estimate for E
[

L(λ,d∗
n)
∣

∣xxxn

]

, and finally

compute the average of the M minimized posterior expected loss estimates and keep

these values.

Step 3. For each estimated Bayes risk obtained in Step 2, add the respective cost cn and keep

these values.

Step 4. With the values obtained in Step 3 and the respective values of n, fit a regression model

as stated in equation (7) of the article and compute the optimal n using expression (8).

In Step 2 we only inspect the trace and autocorrelation plots for n = 5. We expect that the

behavior is the same or better for n > 5. In the cases where the fitted curve is not visually sat-

isfactory and the change of the set in which n varies did not improve the fitting, we consider an

estimate for the total cost as the mean of the 3 estimates obtained for a fixed n, then obtain the op-

timal sample size computationally verifying the n which corresponds to the minimum total cost.

The acceptance rates for the Metropolis-Hastings algorithm used to obtain the optimal sample

sizes ranged between 31% and 71%.

We implemented the above algorithms in R (R Core Team, 2016). The code is available

in https://github.com/eliardocosta/ssdet, or may be obtained from the first author via

e-mail.

https://github.com/eliardocosta/ssdet
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Figure 1: Trace and autocorrelation plots for a sample drawn from the posterior distribution of λ under

the negative binomial/gamma model.
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Figure 2: Prior gamma distribution for different variance.
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