Generalitat de Catalunya Institut d'Estadística de Catalunya

Statistical disclosure control on visualising geocoded population data using a structure in quadtrees

www.idescat.cat

Eduard Suñé, Cristina Rovira, Daniel Ibáñez, Mireia Farré

>The use of quadtrees for the dissemination of georeferenced data is a good method for the preservation of statistical confidentiality, as a certain balance between security and accuracy is achieved.

>This preservation method may lead to undesirable aggregations in areas which correspond to siblings in the hierarchy, due to the high values of population variance (**border effect**). A solution to the border effect consists of translating microdata under the absolute error of the aggregation is greater than that of the translation. > Monte Carlo techniques allow the estimation of the relative error distribution for the population calculated within the quadtree structure QT{125m, 250m, PR2014, 17, t}. We have obtained a value of 5.3% for the median of these errors.

Disclosure Control by Spatial Aggregation Using Quadtrees

Risk of disclosure

A quadtree is defined by *{maximum resolution, minimum resolution, georeferenced data, threshold}.*

Decision $\rightarrow QT\{125m, 250m, PR2014, 17\}$

322

Border Effect. Proposed Solution

+

	% population			
Squares of	Aggregation	Translation		
250 m	15.97	3.52		
125 m	84.03	96.48		
Total	100	100		

Only 0.85% of the total population has been translated

Estimation of Errors. Monte Carlo Experiment

Group	Area	Average sqrt (area)	Cases
1	< 3906.25	43.201	906 🤇
2	3906.25- 15625	93.300	1848
3	15625 - 62500	188.543	3955
4	62500 - 250000	375.363	8517
5	250000 - 1000000	741.249	16242 (
6	100000-400000	1319.950	13407
7	> 4000000	2128.030	245
All		762.151	45120

For each polygon S_i, relative error is

 $\boldsymbol{\varepsilon}_{i} = \frac{|n\prime_{i} - n_{i}|}{|n\prime_{i}|}$

n_i = Population within the X geometry S_i

 $n'_i = \sum n_r * AREA (Q_r \cap S_i) / AREA (Q_r)$

	Quartile 1	Median	Quartile 3	Mean
QT{125m, 250m, PR2014, 17, t}	0.02	0.05	0.19	0.28
QT{125m, 250m, PR2014, 17}	0.02	0.07	0.22	0.33
QT{125m, 125m, PR2014, 17}	0.01	0.04	0.14	0.23

QT {125m,125m,PR2014,17,t}

