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This document contains supplementary material to the paper

“Comparison of two discrimination indexes in the categorisation of

continuous predictors in time-to-event studies”. Web Appendix A

shows the algorithms proposed to correct the optimism of the

concordance probability estimators together with the proposal to

select the optimal number of cutpoints in a Cox proportional hazards

regression model. Web Appendix B shows the results obtained when

we looked for a unique cutpoint in a univariate Cox proportional

hazards regression model and finally, we briefly explain the software

implementation of the methodology proposed in the main

manuscript in Web Appendix C.





Web Appendix A

Optimism correction of the concordance probability estimators

The CPE was proposed as an unbiased alternative to Harrel’s c-index by Gönen and

Heller (2005) when the aim was to estimate the concordance probability and discrimi-

natory power in a Cox proportional hazards regression model. Nevertheless, a discrim-

inative ability measure estimator may be biased upward when the same data set is used

to fit the model and estimate the model’s discriminative ability. Hence, we proposed

to correct the bias of both indexes since both were estimated using the same data that

was previously used to estimate the vector of optimal cutpoints. Barrio et al. (2016)

proposed a bootstrap bias correction approach for the correction of the AUC in a logis-

tic regression setting. In this work, we have extended this proposal to the concordance

probability estimators obtained from a Cox proportional hazards regression model. This

algorithm can be summarised as follows:

Let us denote c the concordance probability estimator, which can be either the c-

index or the CPE.

Step 1. Categorise the predictor variable on the basis of the original sample

{(xi,zi,yi,δi)}
N
i=1 and compute the corresponding concordance probability

(see equations (4) and (5) in the main manuscript). Let us denote this

apparent concordance probability estimator as capp.

Step 2. For b = 1, . . . ,B, generate the bootstrap resample {(x∗ib,z
∗
ib,y

∗
ib,δ

∗
ib)}

N

i=1
by

drawing a random sample of size N with replacement from the original

sample, and categorise the bootstrapped predictor {x∗ib}
N

i=1
on the basis of the

optimal cutpoints obtained in Step 1.

Step 3. Fit the Cox proportional hazards regression model to the bootstrap resample

with the categorised version of the predictor. Let us denote as β̂ββ
b

the vector of

the estimated regression coefficients based on this bootstrap resample.

Compute the corresponding concordance probability, cb
boot for b = 1, . . . ,B.

Step 4. Obtain the linear predictor for the original sample based on the fitted Cox

proportional hazards regression model obtained in Step 3, i.e,

p∑

r=1

β̂b
r zri +

p+k∑

q=p+1

β̂b
q1{xcatki=q}

and compute the concordance probability. Let’s denote this estimator as cb
o for

b = 1, . . . ,B.
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Once the above process has been completed, the optimism O of the original concor-

dance probability estimator is calculated as follows:

O =
1

B

B∑

b=1

|cb
boot − c

b
o|

and the bias-corrected concordance probability estimator is then computed as capp −O.

Selection of the optimal number of cutpoints

Barrio et al. (2016) proposed a bootstrap confidence interval for the difference between

the bias-corrected AUCs to select the optimal number of cutpoints in the categorisa-

tion of a continuous predictor variable in a logistic regression model. In this work, we

have extended this proposal to obtain the optimal number of cutpoints in the categorisa-

tion of a continuous predictor variable in a Cox proportional hazards regression model.

The aim is to compute a bootstrap confidence interval (CI) for the difference between

the bias-corrected concordance probability of the two categorisation proposals in the

Cox proportional hazards regression model in order to determine if an extra category

is needed. This methodology is proposed when the maximisation index considered is

either the c-index (Harrell et al., 1982) or the CPE (Gönen and Heller, 2005).

The procedure to compute the CI for the difference of the bias-corrected concordance

probability estimator can be summarised as follows. For ease of notation, let us denote c

as the concordance probability estimator, which in our specific framework may be either

the c-index or the CPE.

Step 1. For v= 1, . . . ,V , generate the bootstrap resample {(x∗iv,z
∗
iv,y

∗
iv,δ

∗
iv)}

N
i=1 by draw-

ing a random sample of size N with replacement from the original sample.

Step 2. Compute the bias-corrected concordance probability for the categorised vari-

able for k = l and k = l + 1 and denote it as c
∗
l,v and c

∗
l+1,v respectively. The

bias-corrected concordance probability is computed as explained above, now

using for Step 1 the optimal cutpoints obtained for k = l and k = l + 1 on the

basis of the original sample.

Step 3. Compute the difference between the bias-corrected concordance probabilities

obtained for k = l+1 and k = l

c
∗
Di f f ,v = c

∗
l+1,v − c

∗
l,v.

Once the above process has been completed, the (1−α) % limits for the CI for the

difference are given by
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(
c
α/2

Di f f ,c
1−α/2

Di f f

)

where c
p
Di f f represents the p-percentile of the estimated c

∗
Di f f ,v (v = 1, . . . ,V ).

We propose to determine whether an extra optimal cutpoint is needed if the CI does

not contain the value zero.

We conducted a simulation study to analyse the empirical performance of the bias

corrected bootstrap CI when the c-index or the CPE concordance probability estimators

were used. The study was performed in the same conditions as Scenario II of the main

manuscript. Hence, we considered k = 2 as the theoretical number of cutpoints. We

looked for k = 1, k = 2 and k = 3 number of cutpoints for censoring rates of 20%

and 70%. We selected the optimal number of cutpoints using the bootstrap CI for the

difference of the bias corrected estimated concordance probabilities when compared

k = 1 vs k = 2 and k = 2 vs k = 3, and computed the percentage of runs in which the

number of cutpoints selected were 2. Simulations were performed for a sample size of

N = 500 and R = 100 replicates of simulated data. To perform the bootstrap CI V = 100

number of bootstrap resamples were used.

The results suggest that, when using the c-index, the optimal number of cutpoints can

be selected based on the bootstrap CI for the difference of the bias corrected estimated

concordance probability (Table B1). However, the results suggest that the CPE tends

to select the largest number of cutpoints. Further work is therefore needed to provide

accurate methods for the selection of optimal cutpoints using the CPE.

Table B1: Percentage of replicates in which the selected number of cutpoints is k = 2, based on the 95%

bootstrap CI for the difference of the bias corrected estimated concordance probability.

Compared number Concordance probability Censoring Rate

of cutpoints estimator 20% 70%

k = 2 vs k = 1 c-index 100% 81%

CPE 100% 98%

k = 3 vs k = 2 c-index 100% 96%

CPE 77% 47%

Web Appendix B: Selection of an optimal cutpoint in a univariate

Cox proportional hazards regression model

The simulation study was performed in the same conditions as the ones detailed in sec-

tion 3.1 of the main manuscript but considering in this case α= 0. In particular, the sim-

ulations for the univariate Cox proportional hazards regression model were performed

considering the parameters described in Table B2.
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Table B2: Description of the different scenarios considered for the simulation study in the univariate Cox

proportional hazards regression model. γ and λ are the shape and scale parameters of the Weibull distri-

bution and the censorship C ∼U(0,τ ).

Scenario Theoretical Parameters Censorship (τττ )

cutpoints 20% 50% 70%

Ia-Univariate 0
γ = 1,λ= 0.1

β1 = 2.5,α = 0
25 4.25 1.45

Ib-Univariate 1.5
γ = 1,λ= 0.1

β1 = 2.5,α = 0
39 10.25 3.6

Ic-Univariate −1.5
γ = 1,λ= 0.1

β1 = 2.5,α = 0
10.5 2 0.85
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Figure B1: Boxplot of the estimated optimal cutpoints based on 500 simulated data sets, N = 500 sample

size and one theoretical cutpoint in a univariate Cox proportional hazards regression model. Results are

shown for censoring rates of 20% and 70% and c-index and CPE concordance probability estimators. From

left to right: (a) theoretical cutpoint, c = 0; (b) theoretical cutpoint, c = 1.5; and (c) theoretical cutpoint,

c =−1.5.

Figure B1 depicts the boxplot of the estimated optimal cutpoints over 500 simu-

lated data sets, for the c-index and CPE estimators and a sample size of N = 500 for

Scenarios Ia - Univariate, Ib - Univariate and Ic - Univariate, where a single optimal

cutpoint is searched for. Simulation results suggest that when the theoretical optimal

cutpoint is centred, i.e., c1 = 0, the proposed method performs satisfactorily regardless

of the concordance probability estimator used and the censorship rate. However, when

the theoretical cutpoint is offset, the method is not able to find it, particularly when the

censoring rate is high. At this point we must clarify the fact that depending on whether

the cutpoint is shifted to the area of high risk (c1 = 1.5) or low risk (c1 =−1.5), differ-

ences between using the CPE or the c-index are considerable. For instance, in Scenario

Ib - Univariate were the optimal cutpoint is 1.5, the cutpoints obtained with the c-index

for a 70% censoring rate have a low bias whereas when using the CPE the method is

not able to find the theoretical cutpoint. However, in Scenario Ic - Univariate were the

optimal cutpoint is −1.5, the CPE performs better than the c-index. Differences can
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Table B3: Simulations results when one theoretical optimal cutpoints was chosen in a univariate Cox proportional hazards regression model for censoring

rates of 20%, 50% and 70%. Mean, standard deviation, median, bias and mean MSE for the estimated cutpoints are reported when CPE or c-index concordance

probability estimators are used as the maximisation criteria.

Sample
size

Cens.
theoretical
cutpoint

Cutpoint Estimation

CPE c-index

Mean (sd) Median Bias MSE Mean (sd) Median Bias MSE

Scenario Ia - Univariate

N = 500

20% −0.5 −0.000 (0.026) −0.001 −0.000 0.001 0.000 (0.028) 0.000 −0.000 0.001

50% −0.5 −0.014 (0.047) −0.005 −0.014 0.002 0.008 (0.033) 0.003 −0.008 0.001

70% −0.5 −0.043 (0.085) −0.013 −0.043 0.009 0.028 (0.062) 0.012 −0.028 0.005

N = 1000

20% −0.5 −0.003 (0.012) −0.001 −0.003 0.000 0.000 (0.016) 0.000 −0.000 0.000

50% −0.5 −0.012 (0.023) −0.005 −0.012 0.001 0.003 (0.019) 0.001 −0.003 0.000

70% −0.5 −0.033 (0.060) −0.015 −0.033 0.005 0.013 (0.036) 0.004 −0.013 0.001

Scenario Ib - Univariate

N = 500
20% −1.5 −1.485 (0.072) 1.488 −0.015 0.005 1.457 (0.076) 1.485 −0.043 0.008
50% −1.5 −1.420 (0.124) 1.462 −0.080 0.022 1.463 (0.077) 1.490 −0.037 0.007

70% −1.5 −0.952 (0.383) 0.970 −0.548 0.447 1.477 (0.071) 1.497 −0.023 0.006

N = 1000
20% −1.5 −1.512 (0.086) 1.496 −0.012 0.007 1.476 (0.040) 1.493 −0.024 0.002

50% −1.5 −1.468 (0.108) 1.482 −0.032 0.013 1.479 (0.045) 1.495 −0.021 0.002

70% −1.5 −0.948 (0.319) 0.956 −0.552 0.407 1.483 (0.045) 1.498 −0.017 0.002

Scenario Ic - Univariate

N = 500
20% −1.5 −1.308 (0.187) −1.355 −0.192 0.072 −1.443 (0.119) −1.486 −0.057 0.017
50% −1.5 −1.454 (0.088) −1.486 −0.046 0.010 −1.384 (0.195) −1.452 −0.116 0.051

70% −1.5 −1.444 (0.116) −1.478 −0.056 0.017 −1.296 (0.281) −1.398 −0.204 0.121

N = 1000

20% −1.5 −1.327 (0.139) −1.343 −0.173 0.049 −1.468 (0.069) −1.493 −0.032 0.006

50% −1.5 −1.470 (0.059) −1.491 −0.030 0.004 −1.429 (0.109) −1.476 −0.071 0.017

70% −1.5 −1.475 (0.052) −1.489 −0.025 0.003 −1.366 (0.194) −1.446 −0.134 0.056
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be observed in Figure B1. Detailed numerical results are given in Table B3. Therefore,

based on these results we do not recommend the use of this method to search a unique

cutpoint in a univariate setting.

Web Appendix C: Software implementation

To provide the biomedical researchers with an easy-to-use tool for categorising con-

tinuous variables in a Cox proportional hazards prediction model, the methodology de-

scribed in the main manuscript has been implemented in the R programming language (R

Core Team, 2016). Specifically, an R function, called catpredi.survival, was created,

with the Genetic method being implemented using the R-package rgenoud (Mebane and

Sekhon, 2011). This function has been implemented in the R package CatPredi. The

catpredi.survival function provides the optimal cutpoints to categorise a continuous

predictor variable in a Cox proportional hazards regression model.

The CatPredi package can be freely downloaded from https://sites.google.com/site/

biostit/ lineas-de-investigacion/software/catpredi where the use of the function is pre-

sented in more detail.
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