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A simheuristic for routing electric vehicles with
limited driving ranges and stochastic travel times
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Abstract

Green transportation is becoming relevant in the context of smart cities, where the use of electric
vehicles represents a promising strategy to support sustainability policies. However the use of
electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This
paper analyses a realistic vehicle routing problem in which both driving-range constraints and
stochastic travel times are considered. Thus, the main goal is to minimize the expected time-
based cost required to complete the freight distribution plan. In order to design reliable routing
plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start
metaheuristic, which also employs biased-randomization techniques. By including simulation,
simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series
of computational experiments are performed to test our solving approach as well as to analyse
the effect of uncertainty on the routing plans.
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1. Introduction

The growing public concern about living conditions and environmental preservation,
specially in the context of modern cities, leads to the emergence and consolidation of
the sustainable city concept, which integrates social, environmental, and economic di-
mensions (McKinnon et al., 2015). Smart sustainable cities call for an intelligent man-
agement of resources considering the social welfare in order to achieve a sustainable
growth (Bibri and Krogstie, 2017). On the one hand, companies need to satisfy an in-
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creasing consumers’ demand that requires an intense freight transportation activity. This
activity has to be carried out without generating economic inefficiencies. On the other
hand, the welfare and environmental deterioration brings to light the need for smarter
distribution systems that guarantee sustainability of this transportation activity. Nowa-
days, the main initiatives and policies in the area of transportation and logistics consider
pollution targets. Typically, governmental urban guidelines focus on improving passen-
ger and freight transportation due to their noticeable impact on the citizens’ quality of
life. Indeed, freight transportation generates around 10% of the greenhouse gases and
ozone precursors released in the atmosphere (Eurostat, 2016). Since these emissions
affect people’s health, their reduction does not only generate an environmental benefit,
but also social and economic gains. According to The World Bank (2018), 60% of the
operation costs in developing countries are referred to energy bills. This reinforces the
idea of a strong correlation between the different sustainability dimensions.
Consequently, the sustainability concept promotes the use of vehicles running on al-

ternative fuel technologies. In particular, electric vehicles (EVs) represent a promising
option to mitigate the negative impacts caused by transport activities in city logistics.
Governments in many countries promote initiatives and regulations that aim at increas-
ing the use of EVs, specially in city logistics and transportation activities. As a result,
urban mobility is evolving to incorporate EVs. These incentives are motivated by the
potential of zero-emission vehicles to reduce externalities on the citizens and the envi-
ronment (Eurostat, 2016). As a way of responding to the aforementioned challenges
related to sustainable logistics, a number of relevant initiatives have been released, e.g.:
(i) Lean and Green Europe (www.lean-green.eu); (ii) US / Canada Smartway Trans-
port Partnership (www.nrcan.gc.ca); or (iii) UNCTAD Sustainable Freight Transport
and Finance (www.unctad.org). Some of these initiatives are supported and sponsored
by private companies that acknowledge the importance of an environmentally sustain-
able growth. Responding to social and business needs, a large number of enterprises are
incorporating both EVs and hybrid vehicles in their supply chain activities. In summary,
the traditional paradigm of freight distribution in modern cities is changing with the in-
troduction of these new technologies and the adoption of distribution concepts based on
horizontal cooperation (Pérez-Bernabeu et al., 2015, Serrano-Hernández et al., 2017).
However, despite these technological advances there are still barriers to the full de-

velopment of sustainable freight transportation. Examples of these barriers are: ineffi-
cient operations, poor infrastructures, or lack of sustainable policies. EVs require extra
operational efforts due to the limited life of their batteries, the amount of time required
to refill them, and the lack of recharging stations in modern cities. These technical lim-
itations introduce driving-range constraints that do not exist in the case of traditional
internal combustion vehicles (Juan et al., 2016). In addition to the previously described
barriers, one has to take into account that the battery consumption rate depends on a wide
range of random or difficult to predict factors, such as traffic congestion, road character-
istics affecting the energy consumption, weather conditions, driving style, etc. In other
words, real-life is full of uncertainty that has to be taken into account when consider-
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ing travel times. Accordingly, this paper analyses the electric vehicle routing problem
with stochastic travel times (EVRPST), which also considers time-based driving-range
constraints (Figure 1). Being a rich extension of the classical vehicle routing problem
(VRP), the EVRPST is also an NP-hard optimization problem, which justifies the use
of heuristic-based solving approaches. Our main goal is to design an ‘efficient’ routing
plan that satisfies a set of customers’ demands using a homogeneous fleet of electric
vehicles, each of them characterized by a limited loading capacity and driving range.
Furthermore, we consider a more realistic VRP in which transport times are not de-
terministic but random variables instead. Efficiency will be measured in terms of total
transport time. In other words, our main goal is to minimize the total expected time
necessary to complete the delivery. Notice that random travel times could cause the
exhaustion of the vehicle battery before completing its assigned route. Such a route
failure will require a costly corrective action, which will be also measured in time units
(Eshtehadi, Fathian and Demir, 2017).

Figure 1: A simple representation of the EVRPST with driving-range constraints.

To solve the EVRPST, a novel simheuristic approach integrating Monte Carlo sim-
ulation within a multi-start framework is proposed. A review on basic concepts of
simheuristic algorithms can be found in Juan et al. (2015). Also, the generation of
solutions inside the multi-start framework is based on the use of biased-randomized
techniques, which allow to extend deterministic heuristic into enhanced probabilistic
algorithms. Grasas et al. (2017) provide an updated review of biased-randomized algo-
rithms. Our solving approach considers the use of energy safety stocks: that is, during
the design of the routing plan, a certain percentage of the battery is reserved for covering
emergency situations with higher-than-expected travel times. Notice that using higher
levels of safety stock leads to shorter routes and a higher number of required vehicles.
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In contrast, using lower levels of safety stock will increase the probability of suffering a
route failure. Whenever this occurs, we assume that the failing battery has to be replaced
by a new one. In our computational experiments, this corrective action has a time-based
penalty cost equivalent to a round-trip from the depot to the current position of the
battery that needs to be replaced. All in all, the main contributions of this paper are: (i)
to mitigate the lack of works on vehicle routing problems considering both driving-range
limitations and uncertainty conditions; (ii) to develop and test a simheuristic approach
for the EVRPST; and (iii) to analyse the effect of random travel times and the use of
energy safety stocks on the routing plans.
The remaining of the paper is organized as follows: Section 2 reviews related work

in the transportation literature; Section 3 provides some additional details on the prob-
lem under study; our simheuristic solving approach is explained in Section 4; Section 5
describes a series of computational experiments, while the associated results are dis-
cussed in Section 6; finally, Section 7 concludes the paper and identifies potential lines
for future research.

Figure 2: Frequent attributes and constraints in the G-VRP.

2. Literature review

The use of EVs in transport activities is related to several urban changes in terms of
infrastructure and distribution strategies. On the one hand, some of these challenges re-
late to infrastructure and fleet configurations (Juan, Goentzel and Bektaş, 2014b, Shao,
Guan and Bi, 2018). On the other hand, EVs have started to replace conventional vehi-
cles in city logistics, redefining transport operations (Hof, Schneider and Goeke, 2017).
Many logistics and transportation problems in smart cities can be modeled as rich VRP
variants (Cáceres-Cruz et al., 2014). The rich VRP has been a very active research line
in combinatorial optimization problems. This is partly due to the difficulty of manag-
ing multiple attributes and constraints, such as the different sustainability dimensions:
economic, social, and environmental (McKinnon et al., 2015). In particular, the ‘green’
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VRP (G-VRP) is a rich VRP which considers routing problems using alternative fuel
vehicles (AFVs) (Erdoğan and Miller-Hooks, 2012). One popular G-VRP variant is the
so-called pollution routing problem or PRP (Bektaş and Laporte, 2011). In the PRP, the
main objective is to minimize the energy consumption. It also includes time windows
as a realistic constraint. Figure 2 provides a scheme that summarizes different attributes
and constraints frequently associated with the G-VRP (Lin et al., 2014).

2.1. The deterministic G-VRP

A key restriction in VRPs with EVs is the limited capacity of their batteries, which
might require multiple recharging stops. Hence, (Erdoğan and Miller-Hooks, 2012)
solve a G-VRP allowing intermediate stops by implementing procedures based on the
well-known savings heuristics (Clarke and Wright, 1964) and the popular density-based
clustering algorithm. Demir, Bektaş and Laporte (2012) solves a PRP with time win-
dows, where customer sequences are first defined and, afterwards, the travel speeds are
optimized by means of an adaptive large neighbourhood search (ALNS) metaheuris-
tic. Juan et al. (2014b) address the G-VRP with multiple driving ranges. The goal of
this work is to define alternative fleet configurations based on EVs and hybrid-electric
vehicles. The authors describe an integer programming formulation and a multi-round
heuristic algorithm that iteratively constructs a solution. Schneider, Stenger and Goeke
(2014) propose an ALNS metaheuristic with some local searches with the aim of min-
imizing the total distribution cost, which includes the cost of using a fleet of vehicles
plus the actual routing cost. Additionally, these authors considered intermediate stops in
recharging stations. Similarly, the ALNS metaheuristic is hybridized with the adaptive
variable neighbourhood search framework by Schneider, Stenger and Hof (2015), who
deal with a routing problem with EVs-related constraints and also consider intermediate
stops. Koç and Karaoglan (2016) design a simulated annealing metaheuristic, based on
an exact method, to solve the G-VRP for the small-scale instances proposed by Erdoğan
and Miller-Hooks (2012). Hiermann et al. (2016) study the VRP with EVs, time win-
dows, and recharging stations. Hof et al. (2017) consider EVs to solve a location-routing
problem where the objective is to determine whether the battery swap stations should
be defined from candidate locations or closer to the set of customers. Finally, the G-
VRP with multiple objectives – including both monetary and environmental costs – is
discussed by Sawik, Faulin and Pérez-Bernabeu (2017a, b, c).

2.2. The stochastic G-VRP

Stochastic combinatorial optimization has received increasing interest during the last
decades (Bianchi et al., 2009, Ritzinger, Puchinger and Hartl, 2015). Solving a stochas-
tic VRP requires a methodology able to deal with the random components of the prob-
lem, which is not straightforward, as discussed in Juan et al. (2011a, 2013). The most
frequent random variables are: customers’ demands, service and travel times, and fre-
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quency of order placing (Bozorgi, Farasat and Mahmoud, 2017). The previous articles
highlight the importance of dealing with uncertainty, and study realistic characteristics
such as urban transport dynamics. In most existing works, travel times are assumed to
be constant, but this is not a realistic assumption. Hence, Ritzinger et al. (2015) propose
to deal with uncertain travel times by modelling them as stochastic and time-dependent
variables.
Uncertainty conditions are sometimes addressed by means of stochastic program-

ming. This approach provides high quality solutions for small instances (Bozorgi-Amiri,
Jabalameli and Al-e Hashem, 2013). Erdoğan and Miller-Hooks (2012) present an exact
model to solve the VRP with stochastic travel times. These authors assess the influence
of route duration on environmental indicators, such as energy consumption. Another rel-
evant problem is the time-dependent VRP, where the travel times are different depending
on the specific period. Gendreau, Ghiani and Guerriero (2015) provides a literature re-
view on these topics. Travel times may vary by exogenous variables, such as traffic
congestion, weather conditions, moving targets, or mobile obstacles. They might also
be influenced by endogenous variables: for example, by varying the vehicles’ speeds or
by choosing highways over standard roads.
Recently, Eshtehadi et al. (2017) address a VRP with stochastic demands and travel

times. These authors develop a solving approach based on an exact method that is able
to solve instances with up to 20 nodes considering multiple scenarios. The authors
tackle the stochasticity describing two scenarios that represent the best and the worst
conditions for demand and travel times. To conclude this literature review, Table 1

Table 1: An illustrative set of works covering the most popular G-VRP variants.

Papers Atributes Constraints Solution Approach

Shao et al. (2018) Driving range GA

Eshtehadi et al. (2017)
Stochastic demands

Stochastic travel times
Driving range SP

Sawik et al. (2017a,b,c) Multi criteria Driving range EM

Koç and Karaoglan (2016) Driving range SAM and EM

Hiermann et al. (2016) Full recharges Time windows EM

Desaulniers et al. (2016)
Full recharges

Partial recharges

Driving range

Time windows
EM

Schneider et al. (2015) Full recharges Driving range ALNS

Felipe et al. (2014) Full recharges Driving range GSA

Juan et al. (2014a) Heterogeneous fleet Driving range RMS

Schneider et al. (2014) Full recharges Driving range ALNS

Erdoğan and Miller-Hooks (2012)
Stochastic travel time

Full recharges
Driving range SP

ALNS: Adaptive large neighbourhood search. EM: Exact method. SP: Stochastic programming.
RMS: A randomized multi-start algorithm. GA: Genetic algorithm.GSA: Greedy algorithm. SH: Savings heuristic.
SAM: Simulated annealing metaheuristic. DC: Density-based clustering algorithm
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summarizes some illustrative works providing evidence about the most studied G-VRP
variants.

3. Additional details on the EVRPST

The EVRPST is defined on an undirected graph G= (N,A). Here, N contains the depot
(node 0) and a set of customersN∗= {1,2, . . . ,n}. Also, A= {(i, j) | i, j ∈N, i �= j} is the
set of edges connecting any two nodes in N. Each customer i ∈N∗ has a demand di > 0.
There is a setV of homogeneous vehicles, each of them with a loading capacity of q>>

max{di}. As it is usual in most VRPs (Toth and Vigo, 2014), the following assumptions
hold: (i) all customers’ demands must be satisfied; (ii) each vehicle route starts and
ends at the depot; (iii) each customer is visited exactly once; and (iv) the demand to be
served in each route does not exceed the vehicle loading capacity. Moreover, the time-
based cost of traversing each edge (i, j) is given by an independent random variable
Ti j = Tji > 0, which follows a known probability distribution with mean E(Ti j) = ti j.
Thus, the additional constraint is considered as well: the expected travel time employed
by a vehicle to complete its route is limited by the battery duration, tmax > {∑E[Ti j]}.
However, considering stochastic travel times implies introducing uncertainty about

how much energy will be required to complete a route. Energy consumption and travel
times depend on multiple factors, such as current load of the vehicle, road type, vehicle
speed, driving skills, etc. This uncertainty makes it hard to guarantee feasible solutions
when hard time-related constraints on batteries duration are considered. In particular,
electric vehicles have a risk of batteries exhaustion during the trip, which is considered
as a route failure. Decision makers may define corrective actions to properly address
these failures when they happen. They might also define preventive actions to be applied
before the vehicle runs out of battery. Figure 3 illustrates some examples of these types
of actions.
On the one hand, a corrective action to resume the routing plan is required when a

vehicle A runs out of energy after visiting a customer j (failure type I). In our compu-
tational experiments, we will assume that the cost of this corrective action is the time
needed for a new vehicle B to complete a round-trip from the depot to the current lo-
cation of A to supply a new battery. On the other hand, a preventive action could also
be applied: if there is a high risk of running out of battery after serving a customer j,
vehicle A might decide to return from j to the depot for recharging or swapping batter-
ies (failure type II); after that, it might resume its planned route from the next customer,
k. The time-based cost of such a preventive action could be estimated as the time re-
quested to visit the depot for recharging batteries plus the time employed in moving
from the depot to the next customer in the original route, k.
Although the simheuristic methodology introduced in this paper is quite flexible and

could be easily extended to consider preventive actions, in our computational experi-
ments we have only considered corrective actions (i.e., type I failures). Accordingly,
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(a) Preventive action for type II failure

(b) Corrective action for type I failure

Figure 3: Different actions to deal with route failures while using electric vehicles.

the objective function minimizes the expected time-based cost required to complete the
delivery process. Notice that this time-based cost is a non-smooth function, since it
includes the ‘penalty’ cost associated with applying these corrective actions whenever
route failures occur. Hence, if Tv represents the total time employed by vehicle v in
completing its route, the objective function can be expressed as:

min E

(∑
v∈V

Tv

)
(1)
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with:

Tv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i, j∈N
i�= j

Ti j · zi jv if
∑
i, j∈N
i�= j

Ti j · zi jv ≤ tmax

∑
i, j∈N
i�= j

Ti j · zi jv+2 ·Tj0 otherwise
(2)

where the decision variable zi jv takes the value 1 if vehicle v covers the edge (i, j), while
it takes the value 0 otherwise.

4. A simulation-optimization approach

Some of the first works employing simulation-optimization methods to deal with the
VRP are due to Faulin and Juan (2008) and Faulin et al. (2008). Our solving method-
ology relies on a simheuristic approach, which proposes the integration of simulation
techniques within a heuristic framework to address stochastic optimization problems in
a natural way (Juan et al., 2015). In a simheuristic approach, the metaheuristic compo-
nent is responsible for searching and filtering out promising solutions, while the simu-
lation component is responsible for estimating different statistics associated with these
promising solutions when considered in a stochastic environment. When properly de-
signed, the simulation component can also provide feedback that is then used by the
heuristic framework to better guide the search process De Armas et al. (2017). In this
paper, we propose to integrate Monte Carlo simulation (MCS) into a biased-randomized
multi-start framework. Biased-randomized versions of a constructive heuristic allow for
fast generation of high-quality solutions (Grasas et al., 2017). These techniques have
been successfully applied in solving different combinatorial optimization problems in
areas such as vehicle routing (Dominguez, Juan and Faulin, 2014, Dominguez et al.,
2016b, a, c), scheduling (Juan et al., 2014c, Ferone et al., 2018, Gonzalez-Neira et
al., 2017) and facility location (Alvarez Fernandez et al., 2018). When complemented
with some local search and encapsulated inside a multi-start (or similar) framework,
they constitute a strong basis that can be easily extended into a simheuristic frame-
work (Grasas, Juan and Lourenço, 2016). Our biased-randomized multi-start (BR-MS)
simheuristic approach builds upon the biased-randomized version of Clarke and Right
Savings (BRCWS) procedure proposed by Juan et al. (2011b). The complete algorithm
is summarized in Pseudo-code 1 and described next in more detail.
First, the stochastic instance is transformed into a deterministic one by using ex-

pected travel times as initial estimates for the real stochastic values. Then, following the
Clarke andWright (1964) heuristics, a dummy solution is created and the savings associ-
ated with traversing each edge are computed. This initial solution (initSol) is improved
by the classical 2-Opt local search operator, and its expected travel time (stochastic
cost) is estimated by using a fast MCS with just sSim runs – typically in the order of
a few hundreds. Notice that, as any other solution we will generate, initSol will have
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Algorithm 1: BR-MS simheuristic for the EVRPST.

1: procedure Simheuristic solve(test, nodes, edges)

� test: maxTime, β, sSim, lSim, s

� nodes: coordinates, demand

� edges: travel time

2: savings← computeSavings (nodes, edges)

3: initSol ← savingsHeuristic (nodes, savings) � Clarke and Wright (1964)

4: initSol ← localSearch (initSol) � 2-Opt

5: stochCost(initSol)← simulation (initSol, sSim)

6: baseSol← initSol

7: bestStochSolList← add (initSol) � elite solutions

8: while (elapsedT ime < maxTime) do

9: newSol ← BRCWS (nodes, savings, β, s) � Juan et al. (2011b)

10: newSol ← localSearch (newSol) � 2-Opt

11: if (detCost(newSol) < detCost(baseSol)) then

12: stochCost(newSol)← simulation (newSol, sSim)

13: if (stochCost(newSol) < detCost(baseSol)) then

14: baseSol← newSol

15: end if

16: update (bestStochSolList)

17: end if

18: end while

19: for (each sol in bestStochSolList) do

20: stochCost(sol) ← simulation (sol, lSim)

21: end for

22: return bestSol in bestStochSolList

23: end procedure

two time-based costs: the one associated with the deterministic version of the problem
(detCost) and the one associated with the stochastic one (stochCost). At this stage,
initSol is stored as our temporary reference or ‘base’ solution (baseSol) and included in
a list of ‘elite’ stochastic solutions (bestStochSolList). Afterwards, a multi-start process
is repeated until a termination criterion (maxTime) is met. In each iteration, a new
deterministic solution (newSol) is generated by using the BRCWS procedure. Once a
fast local search is applied, this solution is labeled as ‘promising’ if its deterministic
time-based cost is lower than that of baseSol. If it is not promising, newSol is discarded
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and a new iteration starts. If it is promising, a new fast MCS is applied to estimate the
stochastic cost (expected time) associated with newSol. Whenever appropriate, baseSol
is replaced by newSol and the bestStochSolList is updated. Once the ending criterion is
met, the expected time associatedwith each elite solution in bestStochSolList is assessed
again, this time using a more intensive MCS with lSim runs, typically in the order of
a few thousands. Notice that while the assessments in the main loop are required to
be fast, because the number of solutions to assess may be extraordinarily high, those
applied to a reduced list of elite solutions can employ more computing time.
The computational time of the algorithm is bounded by maxTime. Regarding its

computational complexity, each iteration has three stages: the construction with BR-
CWS, the local search, and the simulation phase. The computational complexity of
BRCWS is bounded by the number of the edges m, since the merging can be done in
constant time but it is necessary to examine all savings. Since each client is served ex-
actly once, the local search swapping moves are bounded to O(n2) = O(m). Finally, the
complexity of the simulation stage is O(m · sSim). Therefore, the complexity of each
iteration is dominated by the simulation phase, and it is O(m · sSim).
As usually done in the related literature (Grasas et al., 2017), the biased-randomized

procedure is based on the use of a geometric probability distribution, which makes use
of a parameter β (0 < β < 1). The BRCWS heuristic is adapted from the one proposed
by Juan et al. (2011b) to ensure the feasibility of the generated solutions. In particular, it
is guaranteed that the expected travel time of each vehicle will not exceed the duration of
the batteries. However, as discussed before, under stochastic conditions it is not possible
to guarantee that a route is failure-free. Accordingly, the reliability of each solution (i.e.,
the probability that a solution does not suffer any route failure) is also estimated from
the data obtained in the previous simulation runs. As a way to increase these reliability
levels, different levels of safety stock are considered for each vehicle. In other words,
during the route-design stage, a given percentage of the vehicle driving-range capacity
(s%) is reserved as a safety stock to be used in case of higher-than-expected travel times.
The specific value of s is a decision variable to be determined during the simulation-
optimization process, since it will depend on the specific instance being analysed as
well as on the probability distribution used to model travel times.
Notice that a relatively high value of s leads to short and reliable routes, i.e., routes

employing short travel times and with a low probability of experiencing a failure due to
the existence of a noticeable safety stock. Unfortunately, this also requires the use of
more vehicles to cover all customers. On the contrary, a relatively value of s produces
longer routes with a higher probability of suffering a failure (low reliability), but it
requires a lower number of routes to cover all customers.
Regarding the MCS module, the steps followed to assess the stochastic performance

(expected travel time) of a given solution are: (i) using random sampling from the as-
signed probability distributions, we run different executions of the routing plan in order
to obtain random observations of the total travel time associated with it; (ii) from these
random observations, different statistics can be computed for each routing plan, e.g.:
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average time, variability of these times, etc.; (iii) using the same simulation outcomes,
we estimate the reliability of each routing plan as the quotient between the number of
route failures and the number of simulation runs. These experiments are repeated for
different percentages of the safety stock level, s.

5. Computational experiments

This section presents a set of extensive computational experiments carried out to test our
simheuristic approach for the EVRPST. Firstly, we introduce the instances that will be
used to test our approach. Secondly, the algorithm parameters are discussed. Finally, the
computational results are provided – they will be fully analysed in the next section. The
algorithm has been implemented as a Java application. A standard personal computer
with an Intel Core i5 CPU at 3.2 GHz and 4 GB RAM has been employed to perform
all the experiments.

5.1. Benchmark instances

As a benchmark for our test, a set of 27 instances originally proposed by Uchoa et
al. (2017) are selected. The original instances already included a maximum distance
per route. They have been adapted so they use time-based costs instead of distance-
based ones; i.e., Euclidean distances are considered to be travel times and the maximum
distance per route is transformed into a maximum time per route. These instances are
derived from the ones proposed by Christofides (1976), Golden et al. (1998), and Li,
Golden and Wasil (2005). Table 2 shows the main characteristics of these instances.
In order to perform numerical experiments under uncertainty conditions, the afore-

mentioned deterministic instances have been extended to consider stochastic travel times
as follows: if the original instance shows a determinisitic travel time ti j = t ji > 0 when
moving from node i to node j (with i �= j), then we consider that the stochastic travel
time Ti j is a random variable following an exponential probability distribution with
E[Ti j] = ti j and Var[Ti j] = t2i j. In a real-life scenario, the specific probability distribu-
tions associated with each stochastic travel time would need to be fitted from historical
observations, but our solving approach would still be valid. Furthermore, different lev-
els of safety stock – as a percentage of the battery capacity (i.e., vehicle driving range) –
have been considered in our experiments: s ∈ {0%,5%,10%, . . . ,35%}.

5.2. Parameter settings

One of the advantages of our algorithm is that it does not require a complex fine-tuning
process. In fact, after some quick trial-and-error experiments, the following values were
set for each parameter:
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Table 2: Characteristics of the benchmark instances.

Instance n |V | q tmax

Golden 1 240 9 550 650
Golden 2 320 10 700 900
Golden 3 400 10 900 1200
Golden 4 480 10 1000 1600
Golden 5 200 5 900 1800
Golden 6 280 7 900 1500
Golden 7 260 9 900 1300
Golden 8 440 10 900 1200
CMT6 50 6 160 200
CMT7 75 11 140 160
CMT8 100 9 200 230
CMT9 150 14 200 200
CMT10 199 18 200 200
CMT13 120 11 200 720
CMT14 100 11 200 1040
Li 21 560 10 1200 1800
Li 22 600 15 900 1000
Li 23 640 10 1400 2200
Li 24 720 10 1500 2400
Li 25 760 19 900 900
Li 26 800 10 1700 2500
Li 27 840 20 900 900
Li 28 880 10 1800 2800
Li 29 960 10 2000 3000
Li 30 1040 10 2100 3200
Li 31 1120 10 2300 3500
Li 32 1200 11 2500 3600

n= number of customers; |V |= number of vehicles
q= capacity of each vehicle
tmax = maximum time allowed per route

• The biased-randomized selection during the construction process was generated
by using a geometric probability distribution with parameter β ∈ (0.23,0.30) –
i.e., at each iteration a random value inside the previous interval was assigned to
β.

• The number of simulation runs was set to sSim= 400 for fast simulations (on each
promising solution) and to lSim= 10,000 for intensive simulations (on each elite
solution).

• For each instance, the algorithm was run 20 times, each time employing a different
seed for the pseudo-random number generator.

• For each instance and seed, the algorithm was executed for maxTime = 90 sec-
onds. Notice that this time does not include the time employed in computing the
intensive simulations – however, since the number of elite solutions is reduced,
this final step takes just a few additional seconds.
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5.3. Computational results

Table 3 summarizes the results obtained both using the BRCWS procedure – a deter-
ministic component inside the simheuristic – and the complete MS-BR simheuristic al-
gorithm. Both approaches were run using the same parameters setting as described in
Section 5.2. Also, in this comparison, no safety stock is considered, i.e., s= 0%.

Table 3: Performance of best deterministic and stochastic solutions.

BRCWS (deterministic component) MS-BR Simheuristic

Instance BDS-Det BDS-Stoch (a) Reliability BSS-Stoch Reliability

CMT6 546.59 586.75 0.97 586.75 0.97
CMT7 856.26 1060.14 0.86 1040.29 0.88
CMT8 870.60 911.39 0.97 911.14 0.97
CMT9 1118.03 1189.43 0.95 1183.26 0.96
CMT10 1375.31 1439.11 0.95 1431.04 0.96
CMT13 1537.88 1544.24 0.99 1539.03 0.99
CMT14 823.11 823.24 0.99 823.24 0.99
Golden 1 5786.96 9939.65 0.02 9298.79 0.05
Golden 2 8646.93 13376.35 0.01 12754.47 0.03
Golden 3 12828.23 17757.94 0.01 16416.42 0.06
Golden 4 17963.58 23019.70 0.02 21764.50 0.06
Golden 5 7334.24 7679.08 0.78 7602.17 0.83
Golden 6 9829.11 12119.12 0.14 11371.87 0.30
Golden 7 12270.11 15998.37 0.04 15274.38 0.08
Golden 8 13753.22 18831.50 0.01 17869.64 0.03
Li 21 20465.47 24826.35 0.03 23939.78 0.08
Li 22 16612.02 23985.19 0.00 23330.96 0.00
Li 23 23192.07 27986.58 0.02 27176.38 0.07
Li 24 26160.76 30327.41 0.04 30086.13 0.06
Li 25 17618.46 27426.64 0.00 26942.85 0.00
Li 26 28728.31 34534.97 0.01 32076.98 0.09
Li 27 18460.02 28341.25 0.00 28160.91 0.00
Li 28 32654.00 35986.88 0.08 35547.75 0.20
Li 29 35230.52 38188.93 0.10 36485.80 0.87
Li 30 40363.61 44088.03 0.07 42891.96 0.48
Li 31 44248.09 47195.81 0.13 46263.44 0.58
Li 32 45959.99 50720.75 0.04 49407.09 0.15

Average 16490.84 19996.24 0.31 19340.31 0.40

BDS-Det: Best deterministic solution in a deterministic scenario.
BDS-Stoch: Best deterministic solution in a stochastic scenario.
BSS-Stoch: Best stochastic solution in a stochastic scenario.

Hence, column BDS-Det shows the cost (in total travel time) associated with the
best-found solution obtained for the deterministic version of the problem when it is
applied in a deterministic scenario (without uncertainty); column BDS-Stoch provides
the expected cost of the same solution when it is employed in a stochastic scenario;
the reliability column gives an estimate of the probability that the best deterministic
solution can be used in a stochastic scenario without suffering any route failure – notice
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that reliabilities can be low in some cases since no safety stock is considered. Similarly,
column BSS-Stoch shows the expected cost of the best-found solution for the stochastic
version of the problem when applied in a stochastic scenario. Finally, the reliability
column provides an estimate of the probability that this solution can be completed as
designed –without route failures. As depicted in Figure 4, BDS-Det and BDS-Stoch act
as a lower bound and an upper bound, respectively, for BSS-Stoch. Thus, in general, it
is not a good idea to apply the best-found solution for the deterministic version of the
problem to a scenario under uncertainty, since it might often result in a sub-optimal plan.
Instead, it is better to use a simulation-optimization approach to generate solutions with
a better performance under stochastic conditions (usually by offering a higher reliability
level and thus avoiding expensive corrective actions).

Figure 4: Visual comparison among BDS-Det, BDS-Stoch, and BSS-Stoch.

For each instance and safety stock level s, Table 4 shows the expected cost (in total
travel time) provided by our simheuristic algorithm in a stochastic scenario. The table
also shows the reliability associated with each solution –which tends to increase with
the safety stock level –, as well as the gap with respect to the solution obtained without
using any safety stock.
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One should notice that, in most cases, using a safety stock during the design stage
might be a good strategy to reduce the impact of route failures whenever travel times
are higher than expected. This concept is further discussed in the next section. Also,
note that for a safety stock level of 35% (or higher), there are some instances that cannot
be solved during the design stage; i.e., assuming such a high safety stock level, some
customers in instances Li 25 and Li 27 cannot be reached from the depot in the reduced
‘standard’ time of the batteries (i.e., without considering the extra time that can be pro-
vided by the energy safety stock). That justifies that we focus on safety stock levels
between 0% and 35% of the original battery capacity.

6. Analysis of results

For each considered safety stock level, s ∈ {0%,5%,10%, . . . ,35%}, Figure 5 uses box-
plots to illustrate the distribution of the reliability indices associated with the best-found
stochastic solutions for each instance.

Figure 5: Reliability values for different safety stock levels.

Notice that the higher the safety stock level, the higher the average reliability index
is. Moreover, increasing the safety stock level also contributes to reduce the variability
in these reliability indices – i.e., increasing the safety stock has the expected effect of
reducing the number of route failures, which in turn reduces the extra costs generated
by corrective actions. Of course, increasing the safety stock level makes the solution
more ‘robust’ against uncertainty (thus reducing the cost due to corrective actions), but
it also requires the use of additional routes in the solution, which raises the cost (total
time employed) of the final distribution plan. Therefore, this trade-off must be taken
into account when finding the right level of safety stock for each individual instance.
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Finally, Figure 6 shows the expected travel times, across all instances, for each safety
stock level. The most relevant observation here, is that the expected cost (total travel
time) can be reduced, on average, by using safety stock levels between 20% and 25%
of the original capacity. Of course, the specific safety stock level to use will depend
upon the actual instance as well as on the probability distribution employed to model
the travel times. Still, the point here is that the use of safety stocks can contribute to
reduce the total expected cost of the distribution plan by making this plan less sensitive
to the risk of route failures.

Figure 6: Expected travel times for different safety stock levels.

7. Conclusions and future research

The transportation sector is one of the most pollutant ones in modern societies. As a
consequence, a number of government regulations have been set to promote the use of
electric vehicles in order to reduce the air pollution. However, the current infrastructure
of cities makes it difficult to fully develop green logistics and transportation practices.
For instance, the use of electric vehicles for freight distribution has to deal with multi-
ple obstacles, such as scattered network configuration and the technical limitations of
those vehicles. So far, only a reduced number of works have studied the electric vehicle
routing problem with stochastic travel times. Aiming at reducing this gap in the lit-
erature, the paper analyses the aforementioned problem considering also driving-range
limitations, which might cause route failures when the vehicle runs out of battery.
Our methodology combines Monte Carlo simulation with a multi-start framework,

which also integrates a biased-randomized constructive heuristic. Our simheuristic al-
gorithm also makes use of safety stocks during the routing design stage, thus decreasing
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the risk of suffering route failures. In other words, we focus on constructing reliable
solutions with a low risk of requesting corrective actions. Our results prove that using
deterministic solutions in stochastic scenarios might lead to sub-optimal distribution
plans that can be easily improved by using a simulation-optimization technique such
as the one proposed here. They also illustrate how the use of the suitable energy safety
stock levels during the routing design stage can increase the reliability of the distribution
plans, thus reducing the total expected costs.
Some future lines can extend this work. In particular, we are interested in: (i)

analysing the effect of preventive strategies – such as the ones already described in this
paper – on the expected cost of the considered instances; (ii) extending our methodology
(e.g., by hybridizing it with Petri nets) so it can also take into account possible corre-
lations among travel times associated with different edges; (iii) extending our results to
the heterogeneous fleet scenario, where vehicles might have different driving ranges and
batteries; and (iv) including different sustainability dimensions related to environmental
and social costs of these distribution activities, specially in the context of smart cities.
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