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1 Notes regarding the binned estimation of the empirical Bayes
model for grouped or discretely supported p-values

1.1 An EM algorithm for MML estimation

In order to compute θ̂θθn, we can utilize the EM algorithm of McLachlan and Jones (1988) for

truncated and binned data. Suppose that we observe a realization xi for each datum Xi. Further,

let n j =
∑n

i=1 xi j, for each j ∈ [m]. Define θθθ(0) to be some initial value of the EM algorithm and

denote the value of θθθ(r) after the rth iteration by θθθ(r)⊤ =
(
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going into the details of its derivation, the EM algorithm proceeds as follows. At each iteration

of the EM algorithm, perform an E-step, followed by an M-step.

On the (r+ 1) th E-step (expectation-step), compute α
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and bm = ∞. Then, on the (r+ 1) th M-step (maximization-step), compute
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for each k ∈ {0,1}. The E-step and M-steps are repeated until some predetermined stopping

criterion is met; see Lange (2013, Sec. 11.5) regarding stopping criteria. Upon stopping, the

final iterate of the EM algorithm is declared the MML estimate θ̂θθn.

Since the algorithm composing of updates (1)–(6) constitutes an EM algorithm under the

strict definition of Dempster, Laird and Rubin, D.B. (1977) (see also McLachlan and Krishnan,

2008, Sec. 1.5), the usual properties of the EM algorithm, as proved by Wu (1983), are conferred

upon it. That is, starting from some initial value θθθ(0), if we let θθθ(∞) = limr→∞ θθθ(r) be a limit point

of the EM algorithm, then θθθ(∞) is a stationary point of the log-marginal likelihood

l (θθθ) =
n
∑

i=1

m
∑

j=1

xi j log

∫

B j

f (z;θθθ)dz, (7)

and the sequence l
(

θθθ(r)
)

is monotonically increasing in r; see McLachlan and Krishnan (2008,

Ch. 3) for details regarding the properties of EM algorithms. We note that the EM algorithm

given above is that which is implemented in the mixdist package.

1.2 Consistency of the estimator

As discussed in Bickel and Doksum (2001, Ch. 5), one of the most important properties of any

large-sample estimator is that it is consistent (i.e. it converges to something meaningful as more

data are obtained). We note that if one observes the data Xi and not Pi or Zi, for i ∈ [n], then we

can write the individual log-mass for each Xi, given fixed bins B j, as
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Substitution of (8) into (7) yields the log-marginal likelihood

l (θθθ) =

n
∑

i=1

logP(Xi = x;θθθ) .

Under mild assumptions regarding the dependence structure of the data X1, . . . ,Xn, we can estab-

lish the consistency of the MML estimator θ̂θθn via Theorem 5.14 of van der Vaart (1998).

Proposition 1 Assume that X1,X2, . . . ,Xn is an identical and strongly-dependent random se-

quence. Let −∞ < m < M < ∞, 0 < s < S < ∞, and

Θ =
{

θθθ : π0 > 0,π1 > 0,π0 +π1 = 1,(µ0,µ1) ∈ [m,M]2 ,
(
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then for every ǫ > 0 and compact set K⊂ Θ, we have
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We note that an assumption that implies strong-mixing is M-dependence; see for example Bradley

(2005). That is, if for each index i, the datum Xi is dependent on only the data X j, where

|i− j| ≤ M < ∞. This model is sufficient for many applied settings, such as genome studies and

biological imaging.

A caveat to the application of the MML estimator is that one cannot always guarantee that θ̂θθn

is in fact the maximal value that is required in Proposition 1. This is because the EM algorithm

is only guaranteed to converge to a local maximum of (7) (or a saddle-point that can easily

be perturbed to continue onto a local maximum) and not the global maximum required by the

theorems. This problem can be largely mitigated by using multiple runs of the EM algorithm

from well-selected initial values. The topic of initialization of EM algorithms for mixture models

is a complex one and discussions can be found in McLachlan (1988), Biernacki, Celeux and

Govaert (2003), Karlis and Xekalaki (2003), and Melnykov and Melnykov (2012).

1.3 Proof of proposition 1

In order to apply van der Vaart (1998, Thm. 5.14), we must check that (i) logP(X1 = x;θθθ) is

continuous for all values of x, and that (ii) the uniform strong law of large numbers holds; that is

sup
θθθ∈Θ
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Property (i) is simple to verify since P(X1 = x;θθθ) can be written as an integral of a smooth func-

tion for any x. Thus it is continuous and its logarithm is also continuous. To establish property

(ii), we utilize Andrews (1992, Thm. 4). This requires that n−1
∑n

i=1 logP(X1 = x;θθθ) converges

toE logP(X1 = x;θθθ), pointwise, almost surely for any θθθ ∈Θ, and that Esupθθθ∈Θ |logP(X1 = x;θθθ)|<
∞. For any θθθ, the variance of logP(X1 = x;θθθ) exists since it is a discrete random variable with

only finite outcomes. Thus, we can apply the mixing continuous mapping theorem and the mix-

ing strong law of large numbers (i.e. White, 2001, Thm 3.49 and Cor. 3.48), in order to obtain

the pointwise convergence of n−1
∑n

i=1 logP(X1 = x;θθθ), almost surely. Next, we again note that

logP(X1 = x;θθθ) is a discrete random variable with finite outcomes for any finite θθθ. Therefore,

the supremum and its expectation are also finite, since Θ contains only finite values. Therefore

(ii) is verified and the proposition is proved.

Remark 1 We note that van der Vaart (1998, Thm. 5.14) only lists the requirement to check

assumption (ii) for the proof above. However, the theorem also makes an implicit assumption

that the data are independent. Under dependence, we require the additional assumption of the

strong law of large numbers (i), as demanded by Andrews (1992, Thm. 4). Here, we utilize the

TSE-1D form of the theorem (cf. Andrews, 1992, Eqn. 3.2).

2 Notes regarding the effect of integer encoding

2.1 The effect of integer encoding on the null distribution

In each case the estimated variance is reduced from the nominal value of σ2
0 = 1. This reduction

can be explained by the fact that the finite z-scores distribution that is obtained from the probit

transformation of the encoded p-values is approximately standard normal distribution that is



truncated to the interval [−aγ,aγ ], where aγ = Φ−1
(

1− 1/
[

2γ+1 − 1
])

. Using the variance

formula for a doubly truncated standard normal distribution (cf. Forbes et al., 2011, Sec. 33.4),

we have the variance formula for the z-scores:

varγ = 1− 2aγφ(aγ ;0,1)/ [Φ(aγ)−Φ(−aγ)] .

Substituting 8 and 9 into γ, we obtain truncated variances of var8 = 9.64E-1 and var9 = 9.80E-1,

respectively. These values are almost identical to those visualized in Figure 1(b).

We note that the extra 1/2 factor in the calculation of aγ (i.e. 1/2γ+1 rather than 1/2γ) arises

from the fact that half of the p-values in the interval between zero and the next smallest number

get rounded towards the zero, and similarly half of the p-values in the interval between one

and the next largest number gets rounded towards one. Thus, we lose approximately 1/ [2γ − 1]
observations from the extreme values of the distribution of the p-values that probit transform to

infinite values. Here, the −1 term accounts for a fencepost error.

2.2 The effect on the z-score distribution

We can again provide a reason for the incorrect results that are obtained from the p-type infer-

ence. Let aγ = Φ−1
(

1− 1/
[

2γ+1 − 1
])

, as in Section 2.1. The ML estimator is estimated using

approximately

n(π0 [Φ(aγ)−Φ(−aγ)]+π1 [Φ(aγ − 2)−Φ(−aγ − 2)])< n

observations from the distribution that is characterized by the density f (z;θθθ), that is truncated

on the interval [−aγ ,aγ ]. Note that no member of the family of densities of form f (z;θθθ) can

perfectly match a truncated version of the density. For example, the two families of densities have

different supports. Thus, the ML estimation procedure results in an estimated set of parameter

values that yields a member of the untruncated density that best approximates the truncated

density, in Kullback-Leibler divergence (cf. White, 1982). This approximation process explains

the difference between the estimated parameter values and the generative parameter values. The

smaller sample size explains the larger standard errors that are observed, uniformly over the

estimates of the parameter elements.

3 Notes regarding the assessment of the binned estimator

3.1 Accuracy of the z-score distribution

The first set of results from Figure (2) that are labelled N report the MML estimation results

when no encodings of testing data are implemented. We observe that the MML estimates appear

to be accurate and demonstrate no statistically significant deviation away from the generative

parameter elements of the model. The accuracy of the MML estimator appears to be robust to the

choice among the three assessed binning schemes. This empirical result supports the theoretical

conclusions of Proposition 1.

Upon inspection of the results, we found that the reason for the inaccuracy may be due to the

fact that the FD and Scott binning methods yielded too many bins, that are of uniform width in

the space of the z-scores. The encoding scheme generates uniform width rounding of data in the

p-value space, which when converted to z-scores, can sometimes leave FD and Scott-type bins

empty. This in turn causes the EM algorithm to fit the idiosyncratic nature of these empty bin
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Figure 1: Monte Carlo study from Section 3.3, regarding the estimation of θθθ in the presence of integer
encodings of p-values. Means are represented by points and standard errors are equal to half the length of
the error bars.
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Figure 2: Monte Carlo study regarding the binned estimation of θθθ, in the presence of integer encodings of
p-values. Means are represented by points and standard errors are equal to half the length of the error bars.
The result of each experiment and its binning is reported along the x axis. Here, N indicates no encoding,
where as 8, 9, 16, or 17 indicates the level of γ. The abbreviations FD, Sc and St indicate that Freedman
Diaconis, Scott or Sturges binning was used, respectively.



patterns, that leads to overfitting and biased estimation. This problem diminishes as γ increases,

since there is more overlap between the encoded p-values and the FD and Scott-type bins, which

leads to fewer numbers of empty bins, and thus less overfitting. The Sturges binning mitigates

against this empty bins problem by having much larger bin sizes than the other two assessed

methods.

One may remedy the empty bins and small bins problems of the FD and Scott-type methods

by using some kind of heuristic for joining together adjacent bins to produce bins that contain

larger numbers of observations. Such methods include the strategy of combining frequency

classes that are discussed by Lewis and Burke (1949). Due to the ad-hoc nature of such methods,

and the number of different approaches, the pursuit of their application falls outside the scope of

this article.

3.2 FDR control experiment and simulation scenarios

Scenario S1 is ideal, in the sense that it fulfills the situation whereupon the hypotheses are gen-

erate test statistics that are IID and well-specified in the sense that the p-values Pi are uniformly

distributed under the null. All methods should adequately control the FDR in this case.

Scenarios S2 and S3 are designed to test the performance of the methods when there are

dependencies between the hypotheses. Since S1 only induces a positive correlation structure on

the test statistics, all of the methods should be able to correctly control the FDR level in this case.

In S2, negative correlations are induced between consecutive test statistics. Thus, there are no

theoretical guarantees of the performance of BH in this case. The robustness of BH to positive

correlation is proved in Benjamini and Yekutieli (2001) (see also Yekutieli, 2008). Robustness of

BY to all forms of correlation is proved in Benjamini and Yekutieli (2001) and the performance

of q-values under weak dependence is discussed in Storey and Tibshirani (2003).

Scenario S4 The is somewhat ideal for our EB-based method, since the z-scores distribution

under the null is a normal distribution. However, it violates the uniformity assumption that the

other methods depend upon.

Scenario S5 is misspecified in the sense that the the p-values Pi are not computed under the

correct null hypothesis. It is also not ideal for our EB-based method, since the distribution of the

z-scores under the null is not normal. Thus, there are no performance guarantees for any of the

assessed methods in this case.

3.3 Results

The results for Scenarios S1–S5 are reported in Tables 1–5, respectively.

We begin by making some general observations. Firstly, in terms of power (i.e. TPP), the

FDR control methods follow the order: BY, EB, BH, and q-values, from least to most powerful.

Similarly, with respect to conservatism of their FDR control (i.e. how much smaller FPP is to the

nominal value β), we observe the same order: BY, EB, BH, and q-values, from most conservative

to least. Across the three well-specified testing scenarios (S1–S3), we observe that EB, BH, and

BY were all conservative. These initial observations were uniform across the different encoding

methods.

We observe that q-values can often result in anti-conservative control of the FDR (i.e. FDP

consistently exceeding the nominal value β) in many scenarios and encoding types. For example

in S1–S3, we observe that q-values is anti-conservative for both values of β when we use 8-bits

encoding. We recommend that q-values should be avoided when data are compressed using

8-bits integers encoding.



Table 1: Average FDP and TPP results (Reps = 100) for Scenario S1. The best outcome under each
encoding for each value of β is highlighted in boldface. Here, the best FDP proportion is one that is closest
to the nominal value without exceeding it and the best TPP value is highest value given that the FDP does
not exceed the nominal value. FDP values that exceed the nominal value are emphasized in italics.

FDP TPP

Encoding Method β = 0.05 β = 0.10 β = 0.05 β = 0.10

None EB 2.46E-02 4.66E-02 1.22E-01 2.14E-01

BH 3.99E-02 7.96E-02 1.89E-01 3.25E-01

BY 3.19E-03 6.63E-03 1.12E-02 2.84E-02

q-values 5.03E-02 1.00E-01 2.28E-01 3.81E-01

8-bits EB 4.01E-02 4.11E-02 1.90E-01 1.93E-01

BH 3.98E-02 9.64E-02 1.88E-01 3.70E-01

BY 3.98E-02 3.98E-02 1.88E-01 1.88E-01

q-values 7.23E-02 1.13E-01 3.01E-01 4.12E-01

9-bits EB 2.88E-02 4.33E-02 1.42E-01 2.00E-01

BH 4.92E-02 8.29E-02 2.25E-01 3.34E-01

BY 2.75E-02 2.75E-02 1.36E-01 1.36E-01

q-values 4.94E-02 1.02E-01 2.26E-01 3.85E-01

16-bits EB 2.47E-02 4.63E-02 1.22E-01 2.13E-01

BH 3.99E-02 7.98E-02 1.88E-01 3.25E-01

BY 3.32E-03 6.72E-03 1.67E-02 3.08E-02

q-values 4.96E-02 9.98E-02 2.26E-01 3.80E-01

17-bits EB 2.50E-02 4.64E-02 1.21E-01 2.13E-01

BH 4.02E-02 7.95E-02 1.88E-01 3.25E-01

BY 2.73E-03 7.07E-03 1.31E-02 3.01E-02

q-values 5.06E-02 1.00E-01 2.28E-01 3.80E-01



Table 2: Average FDP and TPP results (Reps = 100) for Scenario S2. The best outcome under each
encoding for each value of β is highlighted in boldface. Here, the best FDP proportion is one that is closest
to the nominal value without exceeding it and the best TPP value is highest value given that the FDP does
not exceed the nominal value. FDP values that exceed the nominal value are emphasized in italics.

FDP TPP

Encoding Method β = 0.05 β = 0.10 β = 0.05 β = 0.10

None EB 2.44E-02 4.62E-02 1.23E-01 2.16E-01

BH 3.96E-02 7.96E-02 1.90E-01 3.26E-01

BY 2.99E-03 6.16E-03 1.16E-02 2.87E-02

q-values 4.96E-02 1.00E-01 2.28E-01 3.81E-01

8-bits EB 3.99E-02 3.99E-02 1.88E-01 1.88E-01

BH 3.99E-02 9.65E-02 1.88E-01 3.69E-01

BY 3.99E-02 3.99E-02 1.88E-01 1.88E-01

q-values 7.26E-02 1.12E-01 3.02E-01 4.09E-01

9-bits EB 2.81E-02 4.23E-02 1.37E-01 1.97E-01

BH 4.92E-02 8.23E-02 2.25E-01 3.33E-01

BY 2.81E-02 2.81E-02 1.37E-01 1.37E-01

q-values 4.95E-02 1.02E-01 2.26E-01 3.85E-01

16-bits EB 2.45E-02 4.67E-02 1.23E-01 2.14E-01

BH 4.00E-02 8.05E-02 1.89E-01 3.26E-01

BY 3.96E-03 6.90E-03 1.74E-02 3.12E-02

q-values 5.04E-02 1.00E-01 2.27E-01 3.80E-01

17-bits EB 2.42E-02 4.62E-02 1.21E-01 2.13E-01

BH 4.00E-02 8.01E-02 1.88E-01 3.25E-01

BY 4.63E-03 7.27E-03 1.31E-02 3.00E-02

q-values 5.00E-02 1.00E-01 2.27E-01 3.80E-01



Table 3: Average FDP and TPP results (Reps = 100) for Scenario S3. The best outcome under each
encoding for each value of β is highlighted in boldface. Here, the best FDP proportion is one that is closest
to the nominal value without exceeding it and the best TPP value is highest value given that the FDP does
not exceed the nominal value. FDP values that exceed the nominal value are emphasized in italics.

FDP TPP

Encoding Method β = 0.05 β = 0.10 β = 0.05 β = 0.10

None EB 2.52E-02 4.71E-02 1.22E-01 2.14E-01

BH 4.04E-02 7.98E-02 1.89E-01 3.25E-01

BY 3.11E-03 7.10E-03 1.16E-02 2.88E-02

q-values 5.06E-02 9.97E-02 2.28E-01 3.81E-01

8-bits EB 4.02E-02 4.05E-02 1.88E-01 1.89E-01

BH 4.02E-02 9.60E-02 1.88E-01 3.69E-01

BY 4.02E-02 4.02E-02 1.88E-01 1.88E-01

q-values 7.21E-02 1.12E-01 3.02E-01 4.10E-01

9-bits EB 2.90E-02 4.51E-02 1.41E-01 2.05E-01

BH 4.97E-02 8.20E-02 2.25E-01 3.31E-01

BY 2.78E-02 2.78E-02 1.36E-01 1.36E-01

q-values 4.98E-02 1.01E-01 2.26E-01 3.84E-01

16-bits EB 2.48E-02 4.60E-02 1.22E-01 2.14E-01

BH 3.99E-02 7.97E-02 1.89E-01 3.25E-01

BY 4.20E-03 6.93E-03 1.71E-02 3.09E-02

q-values 4.98E-02 9.98E-02 2.28E-01 3.80E-01

17-bits EB 2.50E-02 4.66E-02 1.22E-01 2.14E-01

BH 4.00E-02 7.98E-02 1.88E-01 3.24E-01

BY 3.42E-03 7.05E-03 1.28E-02 2.97E-02

q-values 4.99E-02 1.00E-01 2.27E-01 3.80E-01



Table 4: Average FDP and TPP results (Reps = 100) for Scenario S4. The best outcome under each
encoding for each value of β is highlighted in boldface. Here, the best FDP proportion is one that is closest
to the nominal value without exceeding it and the best TPP value is highest value given that the FDP does
not exceed the nominal value. FDP values that exceed the nominal value are emphasized in italics.

FDP TPP

Encoding Method β = 0.05 β = 0.10 β = 0.05 β = 0.10

None EB 2.48E-02 4.63E-02 1.22E-01 2.14E-01

BH 1.48E-01 2.47E-01 4.89E-01 6.50E-01

BY 2.17E-02 3.69E-02 1.07E-01 1.77E-01

q-values 3.74E-01 5.69E-01 7.93E-01 9.33E-01

8-bits EB 8.95E-02 8.95E-02 3.50E-01 3.50E-01

BH 1.50E-01 2.49E-01 4.92E-01 6.53E-01

BY 8.95E-02 8.95E-02 3.50E-01 3.50E-01

q-values 3.80E-01 5.72E-01 7.99E-01 9.34E-01

9-bits EB 6.46E-02 6.46E-02 2.74E-01 2.74E-01

BH 1.61E-01 2.53E-01 5.13E-01 6.58E-01

BY 6.46E-02 6.46E-02 2.74E-01 2.74E-01

q-values 3.76E-01 5.69E-01 7.95E-01 9.33E-01

16-bits EB 2.51E-02 4.74E-02 1.25E-01 2.17E-01

BH 1.48E-01 2.47E-01 4.89E-01 6.50E-01

BY 2.17E-02 3.70E-02 1.10E-01 1.77E-01

q-values 3.74E-01 5.69E-01 7.93E-01 9.33E-01

17-bits EB 2.45E-02 4.65E-02 1.22E-01 2.13E-01

BH 1.49E-01 2.47E-01 4.90E-01 6.51E-01

BY 2.19E-02 3.73E-02 1.09E-01 1.78E-01

q-values 3.74E-01 5.68E-01 7.92E-01 9.32E-01



Table 5: Average FDP and TPP results (Reps = 100) for Scenario S5. The best outcome under each
encoding for each value of β is highlighted in boldface. Here, the best FDP proportion is one that is closest
to the nominal value without exceeding it and the best TPP value is highest value given that the FDP does
not exceed the nominal value. FDP values that exceed the nominal value are emphasized in italics.

FDP TPP

Encoding Method β = 0.05 β = 0.10 β = 0.05 β = 0.10

None EB 4.35E-02 6.15E-02 1.02E-01 1.85E-01

BH 6.10E-02 9.62E-02 1.82E-01 3.20E-01

BY 2.48E-02 2.80E-02 1.51E-02 3.09E-02

q-values 7.14E-02 1.16E-01 2.26E-01 3.85E-01

8-bits EB 1.03E-01 1.03E-01 3.46E-01 3.46E-01

BH 1.56E-01 2.45E-01 4.93E-01 6.58E-01

BY 1.03E-01 1.03E-01 3.46E-01 3.46E-01

q-values 3.65E-01 5.62E-01 8.00E-01 9.33E-01

9-bits EB 8.23E-02 8.23E-02 2.70E-01 2.70E-01

BH 1.66E-01 2.50E-01 5.15E-01 6.66E-01

BY 8.23E-02 8.23E-02 2.70E-01 2.70E-01

q-values 3.63E-01 5.59E-01 7.97E-01 9.32E-01

16-bits EB 3.97E-02 5.67E-02 8.55E-02 1.62E-01

BH 1.55E-01 2.43E-01 4.92E-01 6.56E-01

BY 4.45E-02 5.86E-02 1.06E-01 1.72E-01

q-values 3.61E-01 5.60E-01 7.97E-01 9.33E-01

17-bits EB 4.12E-02 5.73E-02 8.53E-02 1.63E-01

BH 1.54E-01 2.42E-01 4.90E-01 6.55E-01

BY 4.48E-02 5.88E-02 1.03E-01 1.70E-01

q-values 3.60E-01 5.58E-01 7.95E-01 9.32E-01

In Scenario S4, we observe that BH and q-values are highly anti-conservative. Here appli-

cations of the two methods resulted in FDP values that greatly exceeded the nominal value of

β, uniformly over the encoding methods. Both EB and BY were also anti-conservative when

the data were compressed by either 8-bits or 9-bits encodings, for control of the FDR at rate

β = 0.05, although the amounts exceeded were much less than those of the BH and q-values

results. At the β = 0.10 level, both methods were conservative for the two previously mentioned

encoding rates. At all other encoding rates, EB and BY were conservative. EB was less conser-

vative and more powerful than BY in each of the cases where they both correctly controlled the

FDR level, and thus should be preferred.



4 Notes regarding the example application

4.1 Goodness-of-fit of the empirical Bayes model

In order to assess the goodness-of-fit of (7) to the z-score data, we can compute the corresponding

log-ML, which equals l
(

θ̂θθ
)

=−3252.598. We can then compare this value to the log-ML of the

EB model under the so-called theoretical null model, under the assumption that each p-value Pi

is uniformly distributed in the unit interval when Hi is null, for each i ∈ [n]. This corresponds to

fixing f0 (z) = φ(z;0,1).
Let

f (z;ϑϑϑ) = π0φ(z;0,1)+π1φ
(

z;µ1,σ
2
1

)

be the theoretical null EB model, where ϑϑϑ⊤ =
(

π0,µ1,σ
2
1

)

is the restricted parameter vector.

Using the mix function in the mixdist package, we estimate the parameter vector ϑϑϑ for the data

from Section 5 via MML estimation in order to obtain the fitted model

f
(

z; ϑ̂ϑϑ
)

= 0.2884×φ(0,1)+ 0.7116×φ
(

2.376,1.7962
)

. (9)

A visualization of (9) along with its weighted null and alternative components π̂0 f0 (z)= 0.2884×
φ(0,1) and π̂1 f̂1 (z) = 0.7116×φ

(

2.376,1.7962
)

is provided in Figure 3. We observe that the

fit is dramatically poorer in the centre of the plot, when compared to that which was obtained in

Figure 3. This fact can be compared by via the log-ML value of the theoretical null EB model

l
(

ϑ̂ϑϑ
)

=−14399.83.

We observe that the log-ML values suggest that (7) provides a better fit than (3). However,

due to the differences in the number of parameters (i.e.,

∣

∣

∣
θ̂θθ
∣

∣

∣
= 5 and

∣

∣

∣
ϑ̂ϑϑ
∣

∣

∣
= 3), we cannot directly

compare the values l

(

θ̂θθ
)

and l

(

ϑ̂ϑϑ
)

. Since the marginal likelihood is a kind of pseudolikelihood,

we can use the pseudolikelihood information criterion (PLIC) of Stanford and Raftery (2002).

For (7) and (3), the PLIC values are

−2l
(

θ̂θθ
)

+
∣

∣

∣
θ̂θθ
∣

∣

∣
logn = 6579.454

and

−2l

(

ϑ̂ϑϑ
)

+
∣

∣

∣
ϑ̂ϑϑ
∣

∣

∣
logn = 28844.21,

respectively. We again favor (7) over (3), since smaller PLIC values are preferred. Thus, we can

be confident that the EB model provides a discernibly better fit to the theoretical null model and

is thus is a feasibly better fit to the experimental data.
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Figure 3: The theoretical null-based functions f
(

·; ϑ̂ϑϑ
)

, π̂0 f0 (z), and π̂1 f̂1 are plotted with solid, dashed,

and dotted lines, respectively.
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