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On statistical model extensions based on
randomly stopped extremes

Jordi Valero and Josep Ginebra!

Abstract

The maxima and the minima of a randomly stopped sample of a random variable, X,
together with two newly defined random variables that make X into the maxima or min-
ima of a randomly stopped sample of them, can be used to define statistical model
transformation mechanisms. These transformations can be used to define models for
extreme-value data that are not grounded on large sample theory. The relationship
between the stopping model and characteristics of the corresponding model transfor-
mations obtained is investigated. In particular, one looks into which stopping models
make these model transformations into model extensions, and which stopping models
lead to statistically stable extensions in the sense that using the model extension a sec-
ond time leaves the extended model unchanged. The stopping models under which the
extensions based on randomly stopped maxima and their inverses coincide with the ex-
tensions based on randomly stopped minima and their inverses are also characterized.
The advantages of using models obtained through these model extension mechanisms
instead of resorting to extreme-value models grounded on asymptotic arguments is il-
lustrated by way of examples.
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Keywords: Marshall-Olkin extension, extreme value, randomly stopped maximum, randomly
stopped minimum, statistical stability, stopping model.

1. Introduction

In disciplines such as hydrology, meteorology, ecology, seismology, actuarial sciences,
civil engineering or finance, there is a need for statistical models to analyze extreme-
valued data, like the largest single-event rainfall or the magnitude of the strongest earth-
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quake in a year. In these settings researchers most often resort to the use of the gener-
alized extreme-value model, which is grounded on large sample theory that only applies
as an approximation when sample sizes are large enough.

Hence, there is a need for statistical models for extreme-valued data that can be
grounded on finite-sample theory. One framework that provides that ground, models
the number of events in a year, like the number of rainfalls or of earthquakes, through
a random variable, N, with a given stopping model, it models the magnitude of the
events in that year as a sample of i.i.d. observations, (Xi,...,Xy), with a given stopped
model, and it assumes that one observes the maxima or the minima, Y, of that randomly
stopped sample. Models defined like the one for Y are also useful in reliability, where
the minimum (or maximum) of a randomly stopped sample from a lifetime distribution
serves as a model for the lifetime of a series (or parallel) system.

Marshall and Olkin (1997) obtained statistical models of this kind by extending an
initial statistical model through the distribution of the minimum and of the maximum of
a geometrically stopped sample of independent observations with a distribution in the
initial family. This statistical model transformation mechanism has proved extremely
fruitful in practice, as the more than seventeen hundred citations of that paper indicate.

One nice feature of model transformations based on geometrically stopped extremes
is that they always work as model extensions, because the initial family of distributions
is always included in the new family. A second interesting feature of these geometri-
cally stopped extreme extensions is that they are statistically stable in the sense that the
extended model can not be further extended by using that same extension mechanism a
second time. These two features are not in place in general, when transforming statistical
models through randomly stopped maxima and minima with a stopping model different
from geometric. In fact, Marshall and Olkin (1997) conjectures that this kind of stability
can only be obtained through geometrically stopped extremes.

Here these issues are investigated in full generality, by looking into all model trans-
formations defined through the maxima or the minima of N-stopped random samples of
X, for any given stopping model for N and any given stopped model for X.

On top of looking into randomly stopped extreme model extensions beyond geomet-
ric stopping, we also propose two new model transformation mechanisms based on two
new random variables defined to be the ones that make X into the randomly stopped max-
ima and the randomly stopped minima of them, which we label as the N-maxprecursor
and the N-minprecursor of X. These transformations can be viewed as the inverse trans-
formations of N-stopped maxima and of N-stopped minima of X, and the statistical
models obtained through them can be used to learn about the magnitude of events, X,
based on their frequency N and their extreme values Y.

Finally, on top of these four basic model transformation mechanisms based on ran-
domly stopped maxima and minima and on their inverses, we also propose another two
new pair of transformation mechanisms that combine N-stopped maxima of X with
their inverses, and combine N-stopped minima of X with their inverses. Under geo-
metric stopping, these combined model transformation mechanisms coincide with the
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Marshall-Olkin extension mechanism, and they work as model extensions under any
stopping model, which is why we consider them to be the natural way to generalize
Marshall-Olkin when the stopping model is not geometric.

The relationship between characteristics of the stopping model and characteristics
of all the corresponding model transformations considered is studied. The first objective
is to identify which stopping models lead to transformations that always work as model
extensions, and the second objective is to identify which stopping models lead to model
extensions that are statistically stable, in the sense that they do not further extend the
initial model beyond the first use.

The second objective leads to the investigation of the class of stopping models that
are closed under probability generating function (pgf) composition, because that is a
necessary condition for the corresponding randomly stopped extreme extensions to be
stable. This investigation helps us to disprove by way of examples the conjecture that
only geometric stopping models lead to statistically stable extensions.

The paper also looks into the reversibility conditions required of stopping models so
that the model extensions built based on N-stopped maxima and their inverses coincide
with the model extensions built based on N-stopped minima and their inverses, which is
a property satisfied in particular by the extensions based on geometric stopping.

The paper illustrates through examples the advantages of modeling extreme-valued
data with models obtained through randomly stopped extreme extensions instead of re-
sorting to the usual generalized extreme-value model backed through large sample ar-
guments. We also use examples to help understand the rationale behind the use of the
models obtained through the new model extension mechanisms that use the inverse of
N-stopped maxima or minima.

The paper is organized as follows. Section 2 defines randomly stopped extreme
and extreme-precursor random variables, and presents the four basic and four combined
model transformation mechanisms that will be investigated, and Section 3 illustrates
the use of models obtained with these transformations to deal with extreme-value data.
Section 4 introduces the definition of statistically stable model transformation. Section
5 defines extreme-reversible and auto-reversible stopping models, and Section 6 looks
into stopping models that are closed under pgf composition, which are the ones that
yield statistically stable transformations. Section 7 relates these and other properties
of the stopping model with features of the corresponding model transformations, and
Section 8 presents examples of statistically stable randomly stopped extreme extensions.

2. Statistical models based on randomly stopped extremes

2.1. Randomly stopped extremes and extreme precursors

Let X be a real valued random variable defined through its cumulative distribution func-
tion, Fx, and let N be a positive integer valued random variable, with Pr(N = 0) = 0,
defined through its probability generating function (pgf), iy. Assume that one observes
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n independent copies of X, X;, where n is a realization of the stopping variable N inde-
pendent of the X;.

The N-stopped maximum of X, which we denote by maxy (X), is the random variable
Y = max(Xj,---Xy) with cumulative distribution function:

FmaxN(X) = hN(FX)7

and the N-stopped minimum of X, which we denote by miny(X), is the random variable
Y = min(Xj,---,Xy) with survival function hy(Sx ), where Sx = 1 — Fx, and therefore
with cdf:

Faing(x) = 1 —hy (1 — Fx) = hy(Fx),

where hy(t) = 1 —hy(1 —t), which will be denoted as the conjugate function of hy(t).

These two random variables are studied for example in Raghundanan and Patil
(1972), Shaked (1975), Consul (1984), Gupta and Gupta (1984), Rohatgi (1987), Shaked
and Wong (1997), in pp.155-157 of Arnold, Balakrishnan and Nagaraja (1992) and in
Louzada, Beret and Franco (2012).

Next, two new random variables that play a central role in what follows are intro-
duced. They arise from the fact that given any N and any X, one can always interpret X
to be the N-stopped maximum and the N-stopped minimum of the two random variables
defined next.

Definition 1. Given any stopping variable N and any real valued random variable X
as defined above, let the N-maxprecursor of X, denoted as maxg,1 (X), be the random
variable Y with cdf:

-1
Fmaxg,l(X) = hN (FX)7

and let the N-minprecursor of X, denoted as min;,1 (X), be the random variable Y with
cdf:
—1
Fmin&'(X) = hy (FX)-

The properties of hy and of hy presented in Section 5.1 guarantee that they are
always invertible and therefore that Fmax? X) and Fmin;]l (x) are always properly defined
cdf’s. As a consequence, the random variables maxy' (X) and miny'(X) will exist for
any N and any X.

By definition, X is always the N-stopped maximum of max,'(X), the N-stopped
minimum of miny'(X), the N-maxprecursor of maxy(X), and the N-minprecursor of

miny (X),
X = maxy (maxy' (X)) = maxy' (maxy (X)) = miny (miny' (X)) = miny' (miny (X)),

which is why we denote N-maxprecursors and minprecursors as the inverses of the N-
stopped maxima and minima.
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2.2. Statistical model transformations based on randomly stopped
extremes

Let the family of distributions X = {Xp : Fx,, 6 € ®} be a statistical model defined on
x € § C R, with parameter space ©, where Fy, is the cdf of Xp.

Let N = {Ns : hy; = Y1 pa(8)t", 6 € D} be a statistical model defined on the
positive integers, n € N*, with parameter space D, where p,,(8) = Pr(Ns = n) and where
hn is the pgf of Ns. We denote N as the stopping model.

Note that by definition in this paper it will always be assumed that stopping models,
N, are always such that Pr(Ng = 0) = 0 for any 6 € D.

We next define four basic mechanisms,J (), that transform the initial statistical model,
X, into a new statistical model, Y = T(X), through the N-stopped maximum (minimum)
of X € X, and through the N-maxprecursors (N-minprecursors) of X € X, with N € N.

Definition 2. Given any statistical model X and any stopping model N as defined above,
let maxy(X) and maxy,' (X) denote the statistical models defined as:

maxN(f)C) = {Y975 :FYB‘,; = h}\/5 (FX9)7 0c @,5 € 'D},

maxjgl(DC) ={Yp5: Fyys = h;,; (Fx,), 6 € 0,0 € D}.
Likewise, let miny(X) and miny,' (XC) denote the statistical models defined as:

mlnN(f)C) = {Y975 :FYG‘S = EN& (FXQ), 0c0,6¢c D},

- —1
mlan(f)C) ={Yo5 : Fy, 5 = hy, (Fx,), 0 €©,6 € D}.

These two pairs of basic transformations do not always work as model extensions.
Instead, the two pairs of combined transformations defined next work as model exten-
sions for any X, even when one of the two new parameters is fixed. They are the family
of all N-stopped maximum (minimum) of all N-maxprecursors (N-minprecursors) of X,
and viceversa.

Definition 3. Given any statistical model X and any stopping model N as defined above,
let maxy(maxy' (X)) and maxy' (maxy (X)) denote the statistical models defined as:

maxy(maxy ' (X)) = {¥p 5.5, : Fyy 5 5, = s, oh;,;l (Fx,), 6 €0,8,,8, € D},

I‘Ila)(;\[1 (maXN(:X:)) = {Y975175z : 1'7')/9)51?52 = hxlalz OhN(;] (FXQ), 0 c @, 61,82 e D}

Likewise, let miny(miny,' (X)) and miny,' (minx (X)) denote the statistical models:
. . = =1
miny(miny' (X)) = {Yp 5,5, : Fyy 5, 5, = hing, © s (Fx,), 6 €0,0,,0, € D},

R 1 =
miny' (miny (X)) = {¥p.6,.5, : Fyy 5 5, = hing, © i, (Fx,), 6 €0,0,,0, € D}.
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Note that these statistical model transformation mechanisms can also be used to
generate statistical models, Y, starting from a single initial random variable, Y = T(X).

Using our notation, the Marshall-Olkin extension of X is defined to be maxy(X) U
miny(X) when N is the geometric stopping model. In Sections 7.2 and 7.4 it will be
argued that for stopping models other than geometric the transformation maxay () U
miny(X) does not always work as an extension, but that under geometric stopping this
transformation coincides with the four model transformations in Definition 3, which
do work as extensions under any stopping model. As a consequence, we will propose
Definition 3 and not maxy(-) Uminy(-) to be the natural way to generalize Marshall-
Olkin when using stopping models different from geometric.

3. Examples of the use of randomly stopped extreme models

The examples presented here illustrate the advantage in using models defined through
the randomly stopped extreme transformations in Definition 2 instead of using the gen-
eralized extreme-value model, and they help understand the practical relevance of the
randomly stopped extreme-precursor models also considered in that definition. The ex-
amples also touch on the rationale behind the use of the model extensions proposed in
Definition 3.

3.1. On the usefulness of randomly stopped extreme models

Let’s assume for example that one has data on the rainfall in the largest rain event of a
year, Y;, for a set of m years, (y1,...,ym). This kind of data is usually modeled through
the three parameter generalized extreme-value model, because it is the limiting model
for properly normalized extreme values when the rainfall in an event is i.i.d., and the
number of rainfall events in a year grows.

As an alternative way to model this kind of data one can assume that the number of
rain events in the i-th year, &V, is random and can be modeled through a specific stopping
model, N, and that the rainfall in the set of N; events is a sample of i.i.d. observations,
(X1,...,Xy;), from a specific model, X. In this framework the statistical model for the
largest rainfall in the i-th year, ¥; = max (X1, ...,Xy,), is the ¥ = maxy(X) considered in
Definition 2 for that N and that X.

In particular, for simplicity here it will be assumed that the stopping model for the
number of rain events, N,, is the Logarithmic(p) model covered in Example 5.2 and in
Appendix 1, and that the model for the rainfall in an event, X, is the Exponential(A )
with cdf Fy, (x) =1— e~**_ In that case, the model for the largest rainfall of the year,

(Y1,...,Yn), is the logarithmic stopped maximum of an exponential,
, log (1—p+pe ™)
Yrerxp = (Yo : Fy,, = hw, (Fx,) = oz (1= p) A €(0,00),pe(0,1)}.

To compare the use of the randomly stopped extreme models with the use of the gener-
alized extreme-value model, we have simulated a sample for m = 150 years assuming
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that N; is Logarithmic(p = .95) and X; is Exponential(A = 0.01). We have fitted the
true two-parameter Yy, £,, model and the three parameter generalized extreme-value
model,

—(1—K(x— /K
13GEV = {YT],GJC : FYn,(.),K =e (1 K( n)/@)' 777 € (_00700)79 € (0700)7K € (_00700)}7

on this data set by maximum likelihood. We have also fitted the Y72 £xp and Yerna—Exp
models, which are the randomly stopped maxima of an exponential sample when the
stopping model is the truncated binomial(2, p) and the extended truncated negative bi-

nomial (ETNB) with pgf hy = % where ris in (—1, ). We also fit Ypc_renor,
which is the randomly stopped maximum with N being the potential conjugate model
considered in Example 6.1 and X being the lognormal model.

Table 1 presents the maximum likelihood estimates of the parameters of these five
models together with the value of the log-likelihood at its maximum, and their AIC and
BIC. Note that the Yg7np—Exp model fits the data slightly better than the actual Yz,_£,p
model, but when r = 0 the Yr7np—Exp becomes the Y, £, model and the likelihood
ratio test between these two nested models does not reject the simpler actual model with

a p—val of 0.758.

Table 1. Maximum likelihood parameter estimates, logarithm of the likelihood at the mle, and
AIC and BIC for the five models considered for the data on the largest annual rainfall event.

Model | N.par MLE loglikel AIC BIC
574 A

Yrg—Exp 2 p=. 098 | —942.326 | 1888.65 | 1894.67

9

Yerng-gxp | 3 | p=.9844 F=—.1177 A
3
9

.0
.0108 | —942.172 | 1890.34 | 1899.38
.0

\O
=
\O
>
Il

063 | —945.196 | 1894.39 | 1900.41
49109 6 =1.1475 | —952.578 | 1911.15 | 1920.19

YrB2—Exp

98]
9,1
)
=
Il

Yprc—LgNor

w | w|
>
Il

Yeev 1 = 129.01 6=11125 &=—.1207 | —954.256 | 1914.51 | 1923.54

Even though the Y ggv model has one more parameter than the actual Y7, £,, model,
it fits the simulated data significantly worse than this model, and worse than the other
three stopped extreme models tried, even though two of these models assume a wrong
stopping model and one of them assumes a wrong stopping and a wrong stopped model.
Of course that will not always be the case, and the Ysry model will do better than other
stopped extreme models, but when one has a good guess on what the stopping and the
stopped models could be, the corresponding randomly stopped extreme model will tend
to do better than Ygry .

Note also that an important advantage of using randomly stopped extreme models
is that through them one can interpret the estimated parameter values in terms of the
parameters of the model for the stopping variable and the parameters of the model for
the stopped variable. That provides useful information about the frequency of rain and
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about the distribution of the amounts of rain in them, which is lacking when the analysis
is based on the GEV model.

Remark: When Y = maxy(X) one has that Fy = hy(Fx) and the pdf of Y is fy =
h;V(FX) fx, where fx is the pdf of X. Therefore fy is a weighted version of fxy and
maximizing the likelihood function using data on Y is not any more complicated than
doing it with data on X.

3.2. On the usefulness of randomly stopped extreme precursors

Lets assume here that one has data on the magnitude of the strongest earthquake on a
given year for m; years, (yi,...,Vm, ), and data on the number of earthquakes in a year
for my years, (ni,...,ny,), where the set of years with available data might not coincide.
Let’s also assume that one has a good model Y for ¥; and a good model N for »;.

Like in the previous example one can pose ¥; = max (Xi,...,Xy,) where the magni-
tudes of the earthquakes, X;, are i.i.d. realizations of a random variable, X, and hence
one can assume that Y = maxy(X). In such a setting one might lack data about the X
and yet the interest in the analysis might be to learn about the distribution of these X,
and therefore about their cdf, Fy.

In particular, the stopping model for the number of earthquakes, »;, could for ex-
ample again be Logarithmic(p), and a good model for the magnitude of the strongest
earthquake, Y¥;, could be the GEV (1, 6, k) model that was discarded in the previous ex-
ample for the largest rainfall. If that was the case the magnitude of earthquakes, X;,
would be a sample from the random variable X that is the N,-maxprecursor of the GEV
r.v., ¥y 6., and the cdf of X would be:

—1
FXpﬂ,S.,K = Fmax&/i(ymg_,() = th (FYT,‘Q‘K)'

Hence, by obtaining maximum likelihood estimates of p and of (1,0, k) and estimates
of their standard deviations using the data on N; and the data on Y; one would obtain

estimates and confidence intervals for the cdf of X, FX[)‘T]‘G.K = hg,fl (FYﬁ i)

3.3. On the rationale behind using the extensions in Definition 3

Finally, lets assume that in either the hydrology or the seismology settings considered
above one guesses that Ny is the stopping model for the number of events, N;, and Xy
is the model for the magnitude of the events X;, but it turns that the statistical model
Yo = maxy, (Xo) for ¥; = max (Xi,...,X,) fails to fit properly the sample of extreme
values available, (y1,...,ym)-

In a case like this, if one is confident that Ny is the right stopping model one will
want to extend Yo by extending Xy while still using Ny as the stopping model. The first
model extension in Definition 3 does that by replacing Yo = maxuy, (Xo) by:

Y= maXNO(maXﬁ; (Y0)) =AYz 5.6,  Fre 5, 5, = hns, Oh;/;l (Fy,), § € E,81,6, € D},
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where Z is the parameter space of Yy. In this way, the extended model can be posed as
Y1 =maxy, (X;) where Xy has been replaced by its extension, X; = max;[(l) (maxy, (Xo)).
Note that this extension also applies when Y is chosen without making any Xy explicit,
in which case the extended model is Y| = maxy, (X;) with X| = maxg&l) (Yo0)-

By construction, the dimension of the parameter space of Y; = maxy, (rnax;fé (Y0))

is never smaller than the one of Hll = maxj]; (Yo), which is never smaller than the one of
Yo. This paper investigates when is the initial model always included in the transformed
model, and when does repeated use of these extensions fail to keep extending the model.

4. Statistical stability of statistical model transformations

Transformations of a statistical model, X, into a new model, Y = T(X), can be classified
depending on how initial and final models relate. Most often neither X nor Y are included
into each other. The next definition distinguishes three possible relationships when they
do.

Definition 4. Let T(-) transform a statistical model, X, into ) = T(X). Then
1. if X C T(X), one says that X is extended by T (-), and that T (-) extends X,
2. if T(X) C X, one says that X is contracted by T(+), and that T(-) contracts X,

3. if T(X) =X, one says that X is invariant under T ().

When X is extended by T(-) for all X, one says that T(-) is a model extension.
Most often, using a model extension repeatedly will keep extending the model, but some
model extensions do not further extend models beyond their first use. These special
model extensions are examples of the statistically stable transformations defined next.

Definition 5. A statistical model transformation, T(-), is said to be statistically stable if
for any model X one has that T(X) is invariant under T(-), and so if T(T(X)) = T(X)
for any X.

When a model transformation is statistically stable, using that transformation twice
in a row on any statistical model, X, has the same effect as using it just once.

Definition 5 generalizes to any statistical model transformation the concept of geo-
metric-extreme stability proposed in Marshall and Olkin (1997) in the special case of
geometric stopped extreme transformations. Note that the statistical notion of stabil-
ity presented here is different from probabilistic notions of stability, like the ones used
in Rachev and Resnick (1991) or in Fama and Roll (1968), which apply to individual
random variables and not to families of them.

The main purpose of the paper is to investigate the properties of the model transfor-
mations in Definitions 2 and 3, and to determine when do they work as model extensions,
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and when are these model extensions statistically stable in the sense of Definition 5. This
depends only on the characteristics of the stopping model, and in particular on whether
they are extreme auto-reversible and/or closed under pgf composition, the way defined
in the next two sections.

5. Stopping models that are extreme reversible or auto-reversible

5.1. Properties of hy, hy, hy', and Z;,l for positive count variables

A function, &y, is the probability generating function of a positive integer-valued random
variable N, if and only if it is real valued and such that iy (0) = 0, that iy(1) = 1, and
that it is analytic at least on [0, 1), with all derivatives in that set being non-negative.

As a consequence, hy(t) = 1 — hy(1 —t) is always such that y(0) = 0, hy(1) = 1,
and that it is analytic at least on (0, 1], with all of its odd derivatives in that set being
non-negative, and all of its even derivatives non-positive. If all the moments of N are
finite, analyticity and the declared signs of the derivatives of iy and hy hold at least on
[0,1].

From the characterization of Ay it also follows that h;,] and E;,l are always such that
hy'(0) = 5;,1(0) =0and hy'(1) = E;,l(l) = 1, and they are analytic at least on (0,1)
with a first derivative that is non-negative in that set. The second derivative of h;,l is
non-positive, while the second derivative of E;,l is non-negative.

In particular, Ay, hn, h;,l and EX,I are always continuous and increasing on [0, 1],
with Ay and ﬁ;,l being convex, and hy and h,;l being concave.

For the limiting stopping random variable N; with Pr(N; = 1) = 1, these four func-
tions coincide, hy, (t) =t = hy,(t) = h;,ll (1) = E;,Il (t). The next result will be used later
on.

Proposition 1. If N,N; and N, are positive integer valued random variables with pgfs
hy, hy, and hy,, then 1) hy = hy, 2) hy' =Ty, and 3) iy, oy, = (hy, o s ).
5.2. Extreme-reversible stopping models

As a consequence of the properties listed above, iy and h&l can only be the pgf of a
positive integer valued random variable if N = Nj.

On the other hand, E;,l sometimes is the pgf of a non-degenerate positive integered
random variable, N*. That leads to the following definition.

Definition 6. The pair of positive integer valued random variables, (N,N*), is said to

be extreme reversible if E;,l = hy+, and therefore if h;,l = hy-.
When (N,N*) are extreme reversible, their pgf’s need to be such that:

hN*OEN(Z‘) :EN*OhN(Z) ZZZENO]’U\]*([) :hNOEN*(ﬂ, for t € [0,1],
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and in that case, maxy' (X) = miny- (X), miny' (X) = maxy-(X), and therefore
X = maxy (miny+ (X)) = miny (maxy- (X)) = maxy- (miny (X)) = miny- (maxy(X)).

It is important to emphasize that extreme reversibility is a property of (N,N*), and that
when it holds, this property applies for any real valued random variable, X.

Example 5.1: For the “potential conjugate” random variable N, with iy, =1 — (1 — 1)’
for b € (0, 1], one has that ﬁ;,bl —¢!/7, which is a pgf when b = 1/m and m is a positive
integer. Hence, for any positive integer m, the N, with pgf ay, = 1 — (1 —£)'/™, and N},
with pgf hy: = 1", are extreme reversible.

Example 5.2: If N, is zero-truncated Poisson(c), with:

hn, =

¢ e —1

for a given given o > 0, then:
_ 1 u
hNa:—aln(l—(l—e )l):hN:;,

which is the pgf of ar.v. N, with a Logarithmic(o) distribution, most often parametrized
through p = 1 — e~ %. This means that each zero-truncated Poisson random variable is
extreme reversible with one logarithmic random variable.

If a statistical model, N*, is the set of all random variables N* that are extreme
reversible with a random variable in N, one says that N* and N are a pair of extreme-
reversible models.

Note that when N and N* are extreme reversible one has that maxj:(] (+) = miny- (),
and that miny' (-) = max-(-), and one also has that:

Ina)g\f(rn.':lx;f1 ()= Inin;fl (miny«(-)),

maxy; (maxy(-)) = miny: (min{\fi (),

and viceversa. As an immediate consequence, when N and N* are extreme-reversible
models the set of transformations in Definitions 2 and 3 obtained with N and the set of
transformations in these definitions obtained with N* coincide.

5.3. Extreme auto-reversible stopping models

There are instances when N and N* are the same, hence the next definition.

.gs L . . . St
Definition 7. The positive integer random variable N is extreme auto-reversible if hy =
hy, and therefore if hy' = hy.
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When N is extreme auto-reversible,
hyohy(t) =hyohy(t) =t, for t €[0,1],

which is a condition used in stochastic comparison theorems of Shaked (1975) and
Shaked and Wong (1997). When it holds, max,' (X) = miny (X), miny' (X) = maxy(X),
and:

X = maxy(miny (X)) = miny(maxy(X)).

A necessary condition for a r.v. N to be auto-reversible is that Pr(N = 1) = 1/E[N].
The next result, providing a way to generate two auto-reversible random variables start-
ing from any pair of reversible ones, will be used to find examples of auto-reversible
variables.

Proposition 2. If (N,N*) are a pair of extreme-reversible random variables, with pgf’s
hy and hy+ = E,;l, then the random variables N1 and N, with pgfs hn, = hy o hy+- and

hy, = hyn+ o hy, are both extreme auto-reversible.
Proof: Given that hy(t) = 1 — hy(1 —1), one has that:
hy, o hy, (t) = hy o hy= o hy o hys (t) = hy o hy=(t) = t,
where the last two steps use the fact that N and N* are extreme reversible. |

Corollary 1. If N is extreme auto-reversible with pgf hy, then the random variable N3

with pgf hn, = hn o hy is also extreme auto-reversible.

Example 5.3: Using Proposition 2 with the random variables of Example 5.1 leads to
hy, = 1— (1 =)™ and to hy, = (1 — (1 —1)'/™)", which whenever m is a positive
integer are the pgf’s of two auto-reversible random variables.

Example 5.4: Using Proposition 2 with the random variables of Example 5,2 yields:

N
1—(1-p)t’

for 0 < p=e % < 1, which is the pgf of the geometric distribution, and

hy, =

hy, =1—(1/a)log(1+e* —e*),

for o > 0, where N; and N, are extreme auto-reversible random variables.

When all random variables N in N are extreme auto-reversible, one says that the
stopping model N is extreme auto-reversible.

When N is an extreme auto-reversible model one has that max,' (-) = miny(-) and
that miny' (-) = maxy(-), and therefore that:

mang] (maxy(-)) = minN(minj:r] () = miny(maxxy(-)),
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miny! (miny(+)) = maxy(maxy () = maxy (miny(-)).
Therefore, when N is an extreme auto-reversible model, the four basic and four com-

bined transformations in Definitions 2 and 3 collapse down into two basic and two com-
bined transformations.

6. Stopping models closed under pgf composition

A necessary condition for the transformations in Definitions 2 and 3 to be statistically
stable is that the corresponding stopping model be closed under pgf composition as
defined next.

Definition 8. The stopping model N = {Njs : hy,, 6 € D} is said to be closed under pgf
composition, if having N5 and Ng, with pgfs hN61 and hNS2 belonging to N, implies that
Ns, with pgfh;\/&3 = hNal o hN52 also belongs to N.

Requiring that N be closed under pgf composition is equivalent to requiring that if
Ns, and N, belong to N, then the N -stopped sum of N, also belongs to N, and it is
thus equivalent to being closed under model compounding.

6.1. Uniparametric stopping models closed under pgf composition

Here we restrict consideration to stopping models, N = {Ns : hy, = Yoo pi(8)t', 6 €
D}, that i) are closed under pgf composition, ii) have a parametrization J such that
the p;(8) = Pr(Ns = i) are continuously differentiable in & for any i, and iii) have a
parameter space, D, that is a connected subset of R with a non-empty interior. From
now on, this class of stopping models is denoted in a shorthanded way just as “models
uniparametric and closed under pgf composition.”

By focusing on stopping models continuously differentiable and with this kind of
parameter space, we restrict consideration to the kind of stopping models useful in
statistical practice. In particular, we essentially require that the parameter space be a
non-empty interval, thus avoiding stopping models closed under pgf composition like
N = {N; : hy, =t*, k € N*}, which lead to trivially stable transformations, and we also
avoid parameter spaces with isolated points.

The following result, crucial in all that follows, is proved in Appendix 2 (Supple-
mentary material).

Theorem 1. If a stopping model, N = {Ngs : 0 € D}, is “uniparametric and closed under

pef composition” as defined above, then:
1. p1(8) =Pr(Ns =1) >0 forall Ng € N,

2. N can be parametrized in an identifiable way through 6 = Pr(Ng = 1), or through
1N = —logPr(Ns = 1), and
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3. the parameter space is of the form (0, 6] for a given 6y < 1 when using 6, and it
is of the form H = [Ny, o) for a given Ny > 0 when using 1.

From now on, we will always use 1 as the parametrization for models uniparametric
and closed under pgf composition. Note that N, with hy, () = ¢, belongs to one of these
models if, and only if, the lower limit of the parameter space, 7y, is equal to 0.

Next consequence of Theorem 1 relates to repeated use of the transformations in
Definition 2.

Theorem 2. If the stopping model, N = {Ny, : hy,, N € [No,*)}, is “uniparametric and

closed under pgf composition” as defined above, then:
Ly, o by, = Ay, © Ay = vy o,

2. th Ohan = han Oth - th+nz’

—1
NTI1+112’

-1 -1 — h—1 -1 — K1
4o Ny o b Ny, = Ny, 0BT Ny = N s

forall i, M € o, 0).

Proof: Given that N is closed under pgf composition, th o han = hNn, with:

1 = —log((hw,, (hw,, (1)) = —log((Hh, (g, (), (1))=0) = M1 + 11

and commutativity follows from the commutativity of addition. The other three asser-
tions follow from the fact that, because of Proposition 1,

g, © hy, = (B, ©hny,) = Iy
—1 -1 —1_ 1
(@] = O =
hy,, ©hy, = (v, oy, )™ =hy,

and
—1 T, _ -
h= Ny, oy, = (han Oth) = Ny,

The second result that follows from Theorem 1 will imply that under stopping models
closed under pgf composition, Definition 3 yields only two distinct extensions, and that
the basic transformations in Definition 2 are restricted versions of them.

Theorem 3. [f the stopping model, N = {Ny : hy,, 1 € [No,)}, is “uniparametric and

closed under pgf composition” as defined above, then:

—1 —1
o = o
hN m hN”l han hN m
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forall Ny, Mz € [N, o0). Furthermore, Hy(t;M1,1M2) = hn, oh;,;z (t) can be parametrized
in an identifiable way through 1 = —log(H;\f(O; N1,M2)) = M1 — N2, and if one denotes
Hy (1) = Hx(t;M1,1m2) with € R, then

1. Hxp oHy v = HN,n+n/f0r alln,n' €R,
2. when m > nNo, then Hy y = hNn’
_ -1

3. whenm > nNo, then Hy _y = hNn’

4. Hypn—o(t) =t.
Likewise, EN,,] oﬁg,nlz = ﬁ;,;z oﬁNn1 , and the properties listed above also apply for HNJ] (1)=
= - ——1
HN(t;nl,nz) = th Ohan (l) =1 _HN,n(l —l‘).
Proof: The commutativity for 117,12 € [0, ) follows from:

~1 _ -1 —1 _ -1 -1 _ —1
han 0 iy, = han © hiny, © hy, ohan o han © finy, © iy, Ohan = hw,, Ohan'

Hy(t;M1,M2) can be parametrized through n = —log(Hé\f(O;nl,nz)) =1 — N, because

Y 1 o
H 01 me) = (1, ) (0)-Hy, (0) = v, (0) =&~ (17
m

and if 1 = 0y — 12 = 1] — Ny with 71,12, M}, M3 > Mo, then:

hol ohy. =hy! ohy, ohy! ohy. =hy! ohy , ohy. ohy! =hy! oh ohy! =
an an Nﬂé Nﬂé an an eré eré an an Nﬂé an +N71§ an

hol oh ohy! =hil ohy, ohy ohy! =hil oh
Ny Nyj +Nny = Ny Ny Nyg = "y = N, Nog N2

and because if h;,nlz ohy, = h;,nl/ OhNn{ with 11,12, M1, M5 > Mo, then:
2

’ !/
-1 _ (-1
(han °hw,, ) =0 (hNné OhNni) ’

[r=0

and so e~ (M=) = ¢=(M=m) and 1, — 1, = n] — n5. To prove the additivity of Hy 0
Hy v, let B > 1o +max(|n|,|n’|) and note that:

Hy o Hyy = (h;/ﬁl ohyg.,)o (h;;; ohng, ) =

—1 -1 _ 71 _
hN,; OhNﬁ oh/\/ﬁﬂ7 OhNﬁ+n’ = thﬁ OhN2B+n+n’ = Hyx -
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Furthermore, letting 3 > 1o one has that for any n > 1y:
—1 —1
Hyy = hNﬁ ohng., = hN,; o hwg © hw, = hyy s

_ -1 RS A _ -1
Hy _y = hNﬁ+n ohy, = th7 ohNﬁ ohy, = hNn’

and that, Hy n—o(t) = h;/ﬁ] ohny(t) =t. u

By using Hyp, or HNJ] with n € R in a model extension of Definition 3, one extends the
parameter space through values of 17 in the whole real line and not just in H = [1g, °).

Many stopping models satisfy the consequences of Theorem 1 without being closed
under pgf composition. Next, an extra necessary condition for being a stopping model
closed under pgf composition is obtained by imposing that the 1 coefficients of the series
expansion of h;,nlz ohy, and of hy, o h;,;z have to be equal for any 11,1, € [No, ).
Imposing that higher order term coefficients of these expansions are equal leads to other
necessary conditions.

Corollary 2. If a stopping model N = {Ny, : hy,, N € [1o,)} is closed under pgf

composition,

Pr(N, =2)
Pr(Ny =1)(1 —Pr(Ny =1))

=C, forall m € [Ny, ).

6.2. Examples of stopping models closed under pgf composition

Example 6.1: The potential conjugate model,
N={N,:hy,=1-(1-1), pe(0,1]},

is closed under pgf composition with E[N,,] = oo and Pr(N,, = 1) = p, and therefore with
1N = —logp € [0,00). It includes N; but it is not auto-reversible as described in Section
5.3.

Example 6.2: The zero-truncated geometric model,

I
1—(1—p)t

is closed under pgf composition, with Pr(N, = 1) = p and n = —logp € [0,00). It
includes Ny and, as indicated in Example 5.4, it is auto-reversible.

The next result provides a way of generating a new model closed under pgf com-
position, starting from an initial model closed under pgf composition and two random
variables that do not belong to the initial model but whose pgf composition does.

N={N,:hy,= , pe(0,1]},
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Proposition 3. Let the stopping model N = {Ny : hy, , 1 € [No,)} be closed under pgf
composition, and let Ny and Ny be two random variables that do not belong to N but
such that hy, o hy, = hy, with Ny € N. Then, for any given o > 0 the statistical model

No = {Ny : hyg, = hn, o hy, 0wy, 1 € [0+10,00)}

is also closed under pgf composition.

Proof: If Ny, and Ny, are random variables that belong to N, then

hy,

m © Ry, = Ny O iy o © 1y, © iy 0 iy, © i, =

th o thfa o hNa @) hanfa o th = th 9] thJrnz*a o hN| y

which is the pgf of a random variable NHH-TD that also belongs to Ny,. ]

Using Proposition 3 twice in a row does not generate any new family of models.
Next, this result is used to generate three families of stopping models closed under
pgf composition starting from the geometric model.

Example 6.3: If N is zero-truncated Poisson(¢) and N, is Logarithmic(o), as in Exam-
ple 5.2, then hy, o hy, is the pgf of a Geometric(p = e~ %) and by Proposition 3 one has
that for any given value of o > 0 the statistical model:

(e —1)(e” — 1)
o at o » Ne [a’oo)}’
(e —1)(e* —e%) +e*—1
is closed under pgf composition. In the limit, when ¢ tends to O this model becomes

the geometric model, and when o tends to o it becomes N;. The model N, is extreme
auto-reversible for every a, but it only includes N; in the limiting cases mentioned.

1
Na:{Nn :hNﬂ :aln (1+

Example 6.4: Let N; be zero-truncated Negative-Binomial(o 3, ), with:

(1= (1—e B)) P 1
v, = e*—1 ’

and let N, be extended truncated Negative-Binomial(a, —1/f) in Engen (1974), with:

(= (1—e))F —1

th— —a )
e B—1

where & > 0 and 8 > 1. Then Ay, o hy, is the pgf of a Geometric(p = e~ %), and by
Proposition 3 one has that given any @ > 0 and 8 > 1 the statistical model:

1

1— < (—e“+’7+1)(1_l+te_%)ﬁ+en_1 > B

Naﬁ = {Nn : hNn = (e*—e®tM)(1—t+te B )Bten—ex

—a , M E[a,0)},
1—e B
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is closed under pgf composition. When 3 tends to « one obtains the models in Example
6.3, and when o tends to O or B converges to 1 one obtains the geometric model in
Example 6.2. Other than in these limiting cases, N, g is neither extreme auto-reversible,
nor includes N;.

Example 6.5: Let N; be zero-truncated Binomial(n, p = 1 — e~%/"), with:

(14 (en —1)1)"—1
th - % _ | y

and let N, be zero-truncated Negative-Binomial(ct, 1 /n), with:

(1= (1—e %)) n—1

o
en —1

th == b
where oo > 0 and n € NT. Then, hy, o hy, is the pgf of a Geometric(p = e~ %), and by
Proposition 3 one has that for any given o > 0 and n € N the statistical model

1

(eM—1)(—t+14ten )1—e N 4] o -1
—e"‘+e’7)(—t+1+te% )i e*—edtn

(
Now = {Np : hy, = , M€ [a,e)},

o
en —1

is closed under pgf composition. In the limit, when n converges to o one obtains the
models in Example 6.3, and when o converges to 0, or when n is 1, one obtains the
geometric model in Example 6.2. Other than in these limiting cases, Ng , is neither
extreme auto-reversible, nor includes N, but it is extreme reversible with the Na,ﬁ:n in
Example 6.4.

The next result provides a way of generating a family of statistical models closed
under pgf composition starting from any model that is like that.

Proposition 4. If the stopping model N = {Ny, : hy, (t), N € [1o,)} is closed under
pgf composition then, for every given k € N | the statistical model

- L
Ni = {Ny g, (1) = (I, (15)) 7, 1 € [m0,)}
is also closed under pgf composition.

Using this result with Examples 6.1 and 6.2 one has that for every k € N* the models

Ne = {N, : hy, = (1— (1 —tk)p)l/k, p € (0, 1]},

and

ptk 1/k
Ne=A{Np : hy, = <1—(1—p)tk> , p€(0,1]},
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are closed under pgf composition with 1 = —(1/k)log p and support n = 1,k+ 1,2k +
I,....

Finally we present a family of statistical models closed under pgf composition that
embed Examples 6.1 and 6.2 as limiting cases and all include M.

Example 6.6: Given any value o € (0, 1), the statistical model
1—¢

(p+(1=p)(1-1)%)

is closed under pgf composition with E[N,] = p~'/#, with Var[N,] = o and with n =

—log p € [0,00), and it contains N;. In the limit, when o tends to 0 one obtains the model
in Example 6.1, and when ¢ tends to 1 one obtains the model in Example 6.2.

No={Np:hy, =1~ 1/O[,pe(O,l]},

7. Randomly stopped extreme-based model transformations

7.1. Model transformations in Definitions 2 and 3

Given the properties of /iy and of E;,l it follows that Fy,,(x)(y) < Fx(y) and Frin1(x) (y)

< Fx(y) for all y in their domain, and therefore that maxy(X) and miny' (X) are random
variables always larger than X in the usual stochastic order. Furthermore, given the
properties of iy and of /! it follows that Fininy(x) () > Fx (y) and Faxz! (%) (y) > Fx(y),

and therefore that miny(X) and max,'(X) are always smaller than X in that stochastic
order.

Hence, two of the basic transformations of Definition 2 transform any model X =
{Xp, 6 € ®} into amodel Y = {Yp 5, 6 € ©,5 € D} with random variables Yy 5 stochas-
tically larger than Xy, while the other two transform X into a model with Yy 5 stochasti-
cally smaller than Xg.

The four combined transformations of Definition 3 transform X into a model Y with
random variables Yg 5, 5, that can be stochastically larger and smaller than Xg.

By construction, the dimension of the parameter space of models obtained through
transformations in Definition 3 is never smaller than the dimension of the parameter
space of models obtained through transformations in Definition 2, which in turn is never
smaller than the dimension of the parameter space of the initial model. We next investi-
gate when is the initial model always included in the transformed model, and when does
repeated use of these extensions leave the extended model unchanged.

7.2. When do transformations work as extensions?

A sufficient condition for basic transformations in Definition 2 to work as extensions for
any model, X, is that the identity belongs to the stopping model.

Proposition 5. IfN; € N, with Pr(N; = 1) = 1, then the four basic model transformations

in Definition 2 work as a model extension of X, for any X.
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Proof: If N;, with hy,(t) =t, belongs to N, then X € X implies that X € maxy(X),
and so X C maxy(X). The same argument applies to the other three basic transforma-
tions. |

If one starts with a single random variable, X = {X}, then N; € N is necessary and
sufficient for X to be included in maxy(X) and in miny(X). In general though, one can
find instances of specific models, X, included in maxy(X) or in miny(X) without Ny
belonging to N.

On the other hand, the four combined mechanisms of Definition 3 always work as
model extensions, irrespective of whether &; is in N or not.

Proposition 6. The four model transformation in Definition 3 work as a model extension

of X, for any X. That is so, even if one of the two new parameters, 81 or &,, is fixed.

Proof: Fx, € X implies that Fy, ; , = hy, oh;,; (Fx,) € maxy(maxy' (X)) forall §;,8 €
31, |
D, and in particular Fx, = hy; o hg,al (Fx,) € maxy(maxy' (X)), which means that X C
1

maxy (maxy (X)). The same argument applies to the other three transformations, and
when any of the two new parameters is fixed. |

Different from the transformations in Definition 3, using maxy(-) Uminy(-) with a
stopping model N that does not include N; does not always work as a model extension.

7.3. When are the extensions statistically stable?

Under general uniparametric stopping models, the basic transformations of Definition 2
usually add one dimension to the parameter space, while the combined transformations
of Definition 3 usually add two dimensions to it.

Instead, when the stopping model is uniparametric and closed under pgf composition
both basic as well as combined transformations add at most a single dimension, and
the basic transformations of Definition 2 become restricted versions of the combined
transformations of Definition 3 with the extra parameter, 7], of the basic transformations
taking values on a semi-line and the extra parameter, 1, of the combined transformation
taking values on the whole real line.

Furthermore, under general stopping models repeated use of these extensions usually
keep extending the models. Instead, when the stopping model is closed under pgf com-
position and the transformation works as an extension, then it is always a statistically
stable extension and hence repeated use of that extension leaves the extended model
unchanged.

Proposition 7. [f the stopping model N = {Ny : hy,, 1 € [No,°)} is “uniparametric and
closed under pgf composition” then the model transformations in Definition 2 are such
that:

1. if 1o = 0, then maxy(-), miny(-), maxy' (+), and miny/'(-) are statistical model

extensions that are statistically stable, and
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2. if no > 0, then maxy(X) is contracted by maxy(-), miny(X) is contracted by
miny(-), maxy' (X) is contracted by maxy'(+), and miny' (X) is contracted by
miny! (+), for all X.

Proof: By Theorem 2 one has that for any X,
9 = maxy(maxy (X)) = {Yo,n,,m, : Fryp, 1, = ANy, vy, (Fxe ), 0 € O, 11,12 € [Mg,0) } =

{Ye’n :FYe.n = hNn:n1+n2 (FX9)> 0cO,nc [2770,“’)} C
{Yo.n : Fr,,, = hw, (Fx,), 8 € ©,1 € [1o,c0) } = maxy(X),

and so if 79 > 0, then maxx(-) contracts maxy(X). When 1y = 0,
maa (maxac (X)) = (Yo n : Fry, = vy (Fiy), 0 € ©,1 € [0,09)} = masoy(X),

which means that maxy(-) is a statistically stable extension. The same argument applies
to the other three transformations in Definition 2. |

The next result establishes that under uniparametric stopping models closed under
pgf composition, there are only two distinct combined extensions and they are statisti-
cally stable.

Proposition 8. If the stopping model N is “uniparametric and closed under pgf compo-

sition”, then Definition 3 yields only two distinct model extensions which are:
1. Y = mangl (maxy(-)) = maxN(maxj}1 (+)), and
2. Yo = miny (miny(+)) = miny(miny' (+)),

and these two extensions are both statistically stable. Furthermore, in that case it holds
that:

1. the model Y, = maxy' (maxy (X)) is invariant under maxy(-) and maxy' (-),
2. the model Y, = miny! (miny(X)) is invariant under miny(-) and miny' (), and

3. the transformations in Definition 2 are restricted versions of one of these two

extensions.

Proof: By Theorem 3, one has that for any X,

Y = max;f] (maxy(X)) = maxN(max;f] (X)) ={Yo,n : Fy,, = Hxp (Fx,), 0 €0,n € R},



64 On statistical model extensions based on randomly stopped extremes

and the stability follows from that same theorem, because:

maxN(Hl) = {Y97n+n' Py i = HNJ]'H]/ (FXG), 0c0O,n +T]l S R} =Y,

2]

maxy (1) = {¥p B, o =Hy oy (F), 0€ON—1 €R} =Y.

o.n—-n

By Theorem 3 one also has that:
Y, = miny! (miny (X)) = miny(miny,' (X)) = {¥o. : Fy,, = Hxp(Fx,), 6 €0O,n € R},
where Hy p (t) = 1 — Hx 5 (1 —1), and stability follows likewise. [
Corollary 3. If N is “uniparametric and closed under pgf composition”, then:

1. maxy(X) Umaxy' (X) C Yy = maxy' (maxy(X)) = maxy(maxy' (X)),

2. miny(X) Uminy ' (X) C Y5 = miny,! (miny (X)) = miny(miny,' (X)),
and if N; € N, then the models on the left and the models on the right are equal.

7.4. What happens with stopping models both closed and extreme
reversible?

When two stopping models are closed under pgf composition and extreme reversible,
Proposition 8 and the definition of extreme reversibility lead to the next result.

Proposition 9. If the stopping models N and N* are uniparametric, closed under pgf
composition, and extreme reversible, then the two distinct statistically stable model ex-
tensions in Definition 3 obtained with N and the ones obtained with N* are the same
extensions.

According to Proposition 8, when a stopping model is closed under pgf composition
the four extensions in Definition 3 collapse down into two distinct ones. The next re-
sult, stating that when a stopping model is both closed and extreme auto-reversible then

these two extensions become a single one, is a straight consequence of the definition of
extreme-auto-reversibility.

Proposition 10. If the stopping model N is uniparametric, closed under pgf composi-
tion, and extreme auto-reversible, then the four statistically stable model extensions in

Definition 3 coincide,
max;f1 (maxy(-)) = maxN(maxﬁl () = min;r1 (miny(+)) = minN(min{\II(-)),

and they coincide with miny(maxy(+)) and with maxy(miny(+)). If on top of that, N €
N (i.e. no =0), this statistically stable model extension also coincides with maxy(-) U

miny(-).
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The geometric stopping model satisfies all the conditions of Proposition 10. As a
consequence, the Marshall-Olkin extension of X, originally defined to be maxy(X) U
miny(X) when N is geometric, coincides with the extension of X obtained through
Definition 3 with geometric stopping.

As a consequence, we consider the model extensions in Definition 3 to be the nat-
ural way to generalize the Marshall-Olkin extension with stopping models other than
geometric. Different from what happens if one generalized Marshall-Olkin through
maxy(-) Uminy(-), by generalizing them through the transformations in Definition 3
one guarantees that these transformations will work as model extensions under any stop-
ping model, N.

8. Examples of statistically stable extensions

When one uses the model extensions of Definition 3 with stopping models that are nei-
ther closed under pgf composition nor extreme auto-reversible, one obtains four different
extensions that are not statistically stable, and the four basic transformations of Defini-
tion 2 are not restricted versions of them. As an example, Appendix 1 presents the four
basic and the four combined extensions obtained when N are the zero-truncated Poisson
or the logarithmic models.

Here we present the model extensions in Definition 3 obtained when the stopping
models are the ones presented in Section 6.2. Given that these stopping models are all
closed under pgf composition, all the extensions obtained here are statistically stable
in the sense that applying them twice on any given model leads to the same model as
applying them once.

Furthermore, because of Proposition 8 another consequence of all these stopping
models being closed under pgf composition is that for them Definition 3 yields at most
two distinct extensions, and that the transformations in Definition 2 are restrictions of
these two extensions and do not need to be considered apart.

In three of the examples, the stopping models are not auto-reversible, and for them
the model extension in Definition 3 based on maxima extends X = {Xp : Fx,, 6 € O}
into:

Y1 = maxy(maxy (X)) = {Yo.n : Fy,, = Hxpn(Fx,), 8 €0,n € (—o,0)},
and the extension in Definition 3 based on minima extends X into:
Y = min (mingy! (X)) = {Yo.n : By, = Ho(Fy,), 0 €0, € (—o0,00)},
with Hx p(-) and Hy 5 (+) as in Theorem 3.
In the second and third examples the stopping models are auto-reversible, and hence

for them these two extension mechanisms, Y; and Y, coincide because of Proposition
10. The fourth and fifth families of stopping models considered can be reversible, and
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when they are reversible they lead to the same pair of model extensions because of
Proposition 9.

Example 8.1: Let the stopping model be the one in Example 6.1,
N={Np:hy,=1-(1-1)", n€[0,0)}

which is not extreme auto-reversible but it includes Nj;.
The extension of X obtained through maxima and precursors of maxima is:

Y1 = maxy(maxy' (X)) = {Yo.n : Fr,, = 1 — (1—Fx,)* ', 0 €0,1 € (—e0,0)},

which is a special case of the extension in Cordeiro and Castro (2009). When one re-
stricts 7 > 0, here one obtains Y| = maxy(X), and when one restricts 7 < 0 one obtains
1 = maxy' (X)), and therefore in this case Y1 = maxa(X) Umaxy' (X).

When X is for example an exponential random variable, Y; becomes the exponential
model. Because of the stability of this extension, using it again, now on the exponential
model, will leave that model unchanged which means that the exponential model is
invariant under this extension. On the other hand, if X is the logistic model, then Y; is
the type II generalized logistic model, which will also be invariant under this extension.

In general, when a statistical model is invariant under an extension that is stable, it
is because that model can be obtained as the extension of a submodel of it.

The extension of X obtained through minima and precursors of minima is:

Yp = miny(miny (X)) = {Yo.n : Fy,, = (Fx,)* . 6 € ®,1 € (—o0,00)},

which is a special case of the extension in Cordeiro, Ortega and Cunha (2013).

When one restricts 11 > 0, one obtains Y, = miny(X), and when one restricts 1 <0
one obtains Y5 = miny' (X)), and therefore here Y, = miny(X) Uminy' (X).

In this case, if X is for example the Gumbel model with the location parameter fixed,
then Y, is the two parameter Gumbel model, and because of the stability of this extension
the two parameter Gumbel model model will be invariant under this extension. On the
other hand, when X is the logistic model then Y, becomes the type I generalized logistic
model which by stability will also be invariant under this extension.

Example 8.2: Let the stopping model be the zero-truncated geometric in Example 6.2,

t
N ={N,:h - ) € 07 ®)
(N <, —nel 1 ! 0:<)}
which is extreme auto-reversible and includes N;.
As a consequence of this auto-reversibility the extension of X obtained through max-

ima and their precursors or through minima and their precursors here coincide, and it is:

F
Xo ) 9€®an€(7°°’°°)}7

d=Y1="o={Yo:Fy,, = (1— F,)e + Fy,
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which is the Marshall-Olkin extension of X. There is a huge literature using this model
extension. Here, when one restricts 77 > 0 one obtains Y’ = maxx(X) = miny' (X), and
when one restricts 17 < 0 one obtains Y” = miny(X) = max,;' (X). As a consequence,
this is the only example considered here where Y = maxy () Uminy(X).

When for example X is the logistic model with the location parameter fixed the
extended model, Y, is the two parameter logistic model. Because of statistical stability
of this extension, applying it again, now on the two-parameter logistic model, leaves the
model unchanged, which means that this two parameter model is invariant under this
extension.

Example 8.3: Let the stopping model be the N, in Example 6.3 for a given o > 0. Like
the geometric model, this one is also extreme auto-reversible, but it only includes N
when o = 0, which is when it becomes the geometric model.

As a consequence of this auto-reversibility, the extensions of X obtained through
maxima and their precursors and the ones obtained through minima and their precursors
coincide and are:

(P 1)t~ 1)
el —1)(e®* — %) e — 1

1é[x:{Yg’n:FYM:éln <1+( ), 0 €0,n € (—o0,0)},
with Y}, = maxy, (X) = min{q‘lx (X) when one restricts ) > ¢, and with Y, = miny, (X) =
maxir;(DC) when one restricts 7 < —a. When one restricts 7 € (—, @) one obtains
Yy =maxy, (max;[llx (X)) = maxy, (miny, (X)) with n;,m2 such that n, — 13 € (—a, ),
but this restricted transformation does not coincide with any of the transformations in
Definition 2.

Different from what happens under the geometric model with &¢ = 0, when o > 0
neither maxy, (X) nor miny, (X) work as a model extension of X, and maxy, (X) U
miny, (X) C Y4 with an inclusion often strict. Hence this is an example where maxy;, (X)
Uminy, (X) does not work as a model extension of X, but where using the Y, from Def-
inition 3 does.

Example 8.4: Let the stopping model be the N, g in Example 6.4 for a given o > 0 and
B > 1. Here N is not in the model, and the model is not auto-reversible and therefore it
yields two different model extension mechanisms.

The extension of X obtained through maxima and their precursors is:

_a\\A
(17e“+’7)<17FX9 <lfe ﬁ)) +el—1
1_
a\\ B
(e"‘—e”‘*")(l—er <1—eig>> +el—e®

,0€0,n € (—c0,0)},

1310(,[3 = {YGJI :Fyo.n =

. / _ " _ —1
and here one obtains Hla,ﬁ = maxy,, ,(X) when 1 > «, and Hla.ﬁ = maxy, (X) when

N < —a. When 1 € (—a, &) one has that H’l’;ﬁ = maxy maxjjfiﬁ (X)) with ny, 12 such

a,p (
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that 1, — N1 € (—a, o), which can neither be obtained through maxy,
maxﬁlﬁ (+).

5 (+) nor through

The model extension of X obtained through minima and their precursors is:

=R

: 5
(enfe“)<l+FX9 (e 71>> +e%—e® TN
o B
(eLl)(HFXe (eﬁ 71>> —enta ]

o
1—eh

1—

132,1‘5 = {YO,T] :FYG.n = ) 0 c ®,Tl € (_00700)}7

and one obtains %a,p = miny,, ,(X) when 1 > a, and %a,ﬁ = min;fi 5 (X) when n <
—a. When 1 € (—a, o) one has that H’Z’;ﬁ = miny,, , (miniiﬁ(%)) with 17,7, such
that n — 1M1 € (—a, ), which can neither be obtained through miny, ;(-) nor through
min;flﬁ ().

Here maxy;, ; (X) Umaxﬁiﬁ (X) C Y145, and miny,, , (X) Uminy! , (X) C Yrq,p With

a,

these inclusions being most often strict.

Example 8.5: Let the stopping model be the Ny, in Example 6.5 for a given @ > 0
and n € NT. This model does not include N; and it is not extreme auto-reversible, but
it is reversible with the Ny g, in Example 6.4. As a consequence, the model extension
obtained with N , through maxima and precursors of maxima, coincide with the model
extension obtained with the Ny g, of Example 6.4 through minima and precursors of
minima, and viceversa.

9. Final comments

The main contribution of this article is putting together a set of new concepts needed to
define and untangle the properties of a large family of statistical model transformation
mechanisms that lead to statistical models useful for the analysis of extreme-value data
and in reliability. The concepts introduced are:

1. the notion of N-extreme precursors, which can be understood as the inverse of N-
stopped maxima and minima, and the model extension mechanisms derived from
them (Definitions 1, 2 and 3), which help generalize Marshall-Olkin extensions
beyond geometric stopping,

2. the concept of statistical stability of a statistical model extension (Definition 5),
which applies to any statistical model extension and not just to the ones considered
in this paper,

3. the idea of extreme reversible and auto-reversible stopping models (Definitions 6
and 7), under which the extensions based on randomly stopped maxima and their
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inverses coincide with the extensions based on randomly stopped minima and their
inverses,

4. and the idea of stopping models closed under pgf composition (Definition 8),
which are the ones leading to statistically stable randomly stopped extreme type
of extensions.

All these new concepts are needed for the picture to be complete. In particular, if we
touch on methods to generate stopping models that are auto-reversible and/or closed
under pgf composition other than the geometric model, it is to help understand that the
role played by geometric stopping is not as unique as one might think after reading
Marshall Olkin (1997).

A second contribution of this article are a set of theoretical results stating that uni-
parametric stopping models closed under pgf composition can always be parametrized
through 6 = Pr(N = 1) with a parameter space of the form (0, 6y] (Theorem 1), and
that the pgfs of these models commute under composition among themselves and with
their inverses (Theorems 2 and 3). These results are then used in Section 7 to determine
conditions leading to statistically stable extensions.

Only two of the families of statistically stable model extensions presented in Section
8 are based on stopping models that are both closed under pgf composition and extreme
auto-reversible. And the geometric model is the only stopping model that we know that
shares these two features and includes N;. Nevertheless, note that in order to obtain
statistically stable extensions through Definition 3, one only needs that the stopping
model be closed under pgf composition.

The only consequence of using stopping models that, unlike the geometric model,
are not extreme auto-reversible is that the extension based on maxima and their inverses
does not coincide with the extension based on minima and their inverses, and using stop-
ping models that, unlike geometric, do not include N; does neither affect the statistical
stability nor the fact that the transformations presented in Definition 3 always work as
an extension.

Finally, note that our definition of statistical stability is extremely basic and fun-
damental. A statistical model transformation is statistically stable only if using that
transformation twice in a row on any statistical model has the same effect as using that
transformation just once. The only reason that we can think for not finding the notion
of statistical stability anywhere in the statistical literature is that it might be difficult to
prove results of that kind outside the specific context of randomly stopped extreme trans-
formations, and the closely related area of randomly stopped sum transformations; It is
easy to check that stopping models closed under pgf composition also lead to randomly
stopped sum model extensions that are statistically stable.

We consider statistical stability to be a property that should be central in the study of
any type of statistical model extension and not just in the study of the specific extensions
considered here, and we intend to keep investigating that.
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Appendix 1: Model extensions when N is the zero truncated
Poisson or the logarithmic model

The zero-truncated Poisson(c) model is defined through the set of pgfs:

ot

e —_—
N:{Na:hNa:T

1 o€ [0,00)}.

This model includes N; and therefore both the basic transformations in Definition 2 as
well as the combined transformations in Definition 3 are extensions, but this model is
neither extreme auto-reversible, because Pr[Ny = 1] = 1/E[N], nor closed under pgf
composition, because

o

1 o?
Pr(Ny, =2)= ———
r(Na =2) 2e%—1’

and therefore it does not satisfy the necessary condition of Corollary 2 for being closed,

Pr(Ny = 2) oc+1 a? Constant
= = —~———————— = Lonstant.
Pr(Ng = 1)(1—=Pr(Ng =1)) 2 2e*—a—1

The four basic extensions of X = {Xp : Fx,, 6 € ©} obtained through Definition 2 are,

eane _

maXN(x) = {YG,OC : FYS,O{ = 6057—1

,0€0,0€(0,)},

In(1+ (e*—1)Fx,)
o
e%(1 —e %)
e*—1
In(1 + (e — 1)(1 — Fy,))
(04
and the four combined extensions of X obtained through Definition 3 are,

maxil(DC) ={Yoa:Fy,, =

, 0€0,a€(0,o)},
miny(X) = {Ye,¢ : Fry, = ,0€0,0 € [0,00)},

minj_\fl(f)C) ={Ypu: Fyy, =1—

,0€0,a¢c0,0)},

maxy (maxy (X)) =

1

e —1

)
{YG,OC|,062 :FYS,al‘wZ = <(1 —f-(eal — 1)FX3)‘11 — 1) ,0e€0,a1,00 € [0,00)},

maxy, (maxy (X)) =

1 (e® —1) (e*F —1
{YesalsQZ :FYO,(XIJXZ == a721n (1 + eal(_l ) 3 6 6 @,OC],OQ E [0,00)},

miny(miny' (X)) =
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e®

*
{Y07a1,a2 :FY9~°‘110‘2 - e — | (1 o (1 o (1 _e_al)FXG) al) ,0€0,01,00 € [0700)}7

miny! (miny (X)) =

| (e —1) (e“‘(lfFXS)—l)
{Y970€1,062 :FYe.al.a,z =1- 072111 el _ |

+1 ,96@,061,0626[0,00)}.

Furthermore, according to Example 5.2 the Logarithmic(p) model defined through:

_log(1—pt)
~ log(1-p)

where p = 1 — e™ %, is extreme reversible with the zero-truncated Poisson model. As a
consequence of that property, the set of model extensions obtained through Definitions 2
and 3 using the Logarithmic(p) model coincide with the set of extensions obtained using
the zero-truncated Poisson model presented in this Appendix.

The specific extensions for the Logarithmic(p) model are the ones listed above for
the truncated Poisson model after replacing o by —log(1 — p), and after switching
maxy and minﬁl and switching miny and max{\fl. For example the maxy(-) transfor-

N:{NP:th ’ pE[O,l)},

mation when N is Logaritmic(p) is the minj’q,l () transformation when N is truncated

Poisson(a = —log(1 — p)), the miny(-) transformation is the max;ﬂ1 (+) transformation,
and so on.
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