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On statistical model extensions based on 
randomly stopped extremes 

Jordi Valero and Josep Ginebra1 

Abstract  

The maxima and the minima of a randomly stopped sample of a random variable, X , 
together with two newly defned random variables that make X into the maxima or min-
ima of a randomly stopped sample of them, can be used to defne statistical model 
transformation mechanisms. These transformations can be used to defne models for 
extreme-value data that are not grounded on large sample theory. The relationship 
between the stopping model and characteristics of the corresponding model transfor-
mations obtained is investigated. In particular, one looks into which stopping models 
make these model transformations into model extensions, and which stopping models 
lead to statistically stable extensions in the sense that using the model extension a sec-
ond time leaves the extended model unchanged. The stopping models under which the 
extensions based on randomly stopped maxima and their inverses coincide with the ex-
tensions based on randomly stopped minima and their inverses are also characterized. 
The advantages of using models obtained through these model extension mechanisms 
instead of resorting to extreme-value models grounded on asymptotic arguments is il-
lustrated by way of examples. 

MSC: 62E10, 62A99, 60E10. 

Keywords: Marshall-Olkin extension, extreme value, randomly stopped maximum, randomly 
stopped minimum, statistical stability, stopping model. 

1.  Introduction  

In disciplines such as hydrology, meteorology, ecology, seismology, actuarial sciences, 
civil engineering or fnance, there is a need for statistical models to analyze extreme-
valued data, like the largest single-event rainfall or the magnitude of the strongest earth-
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quake in a year. In these settings researchers most often resort to the use of the gener-
alized extreme-value model, which is grounded on large sample theory that only applies 
as an approximation when sample sizes are large enough. 

Hence, there is a need for statistical models for extreme-valued data that can be 
grounded on fnite-sample theory. One framework that provides that ground, models 
the number of events in a year, like the number of rainfalls or of earthquakes, through 
a random variable, N, with a given stopping model, it models the magnitude of the 
events in that year as a sample of i.i.d. observations, (X1, . . . ,XN), with a given stopped 
model, and it assumes that one observes the maxima or the minima, Y , of that randomly 
stopped sample. Models defned like the one for Y are also useful in reliability, where 
the minimum (or maximum) of a randomly stopped sample from a lifetime distribution 
serves as a model for the lifetime of a series (or parallel) system. 

Marshall and Olkin (1997) obtained statistical models of this kind by extending an 
initial statistical model through the distribution of the minimum and of the maximum of 
a geometrically stopped sample of independent observations with a distribution in the 
initial family. This statistical model transformation mechanism has proved extremely 
fruitful in practice, as the more than seventeen hundred citations of that paper indicate. 

One nice feature of model transformations based on geometrically stopped extremes 
is that they always work as model extensions, because the initial family of distributions 
is always included in the new family. A second interesting feature of these geometri-
cally stopped extreme extensions is that they are statistically stable in the sense that the 
extended model can not be further extended by using that same extension mechanism a 
second time. These two features are not in place in general, when transforming statistical 
models through randomly stopped maxima and minima with a stopping model different 
from geometric. In fact, Marshall and Olkin (1997) conjectures that this kind of stability 
can only be obtained through geometrically stopped extremes. 

Here these issues are investigated in full generality, by looking into all model trans-
formations defned through the maxima or the minima of N-stopped random samples of 
X , for any given stopping model for N and any given stopped model for X . 

On top of looking into randomly stopped extreme model extensions beyond geomet-
ric stopping, we also propose two new model transformation mechanisms based on two 
new random variables defned to be the ones that make X into the randomly stopped max-
ima and the randomly stopped minima of them, which we label as the N-maxprecursor 
and the N-minprecursor of X . These transformations can be viewed as the inverse trans-
formations of N-stopped maxima and of N-stopped minima of X , and the statistical 
models obtained through them can be used to learn about the magnitude of events, X , 
based on their frequency N and their extreme values Y . 

Finally, on top of these four basic model transformation mechanisms based on ran-
domly stopped maxima and minima and on their inverses, we also propose another two 
new pair of transformation mechanisms that combine N-stopped maxima of X with 
their inverses, and combine N-stopped minima of X with their inverses. Under geo-
metric stopping, these combined model transformation mechanisms coincide with the 
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Marshall-Olkin extension mechanism, and they work as model extensions under any 
stopping model, which is why we consider them to be the natural way to generalize 
Marshall-Olkin when the stopping model is not geometric. 

The relationship between characteristics of the stopping model and characteristics 
of all the corresponding model transformations considered is studied. The frst objective 
is to identify which stopping models lead to transformations that always work as model 
extensions, and the second objective is to identify which stopping models lead to model 
extensions that are statistically stable, in the sense that they do not further extend the 
initial model beyond the frst use. 

The second objective leads to the investigation of the class of stopping models that 
are closed under probability generating function (pgf) composition, because that is a 
necessary condition for the corresponding randomly stopped extreme extensions to be 
stable. This investigation helps us to disprove by way of examples the conjecture that 
only geometric stopping models lead to statistically stable extensions. 

The paper also looks into the reversibility conditions required of stopping models so 
that the model extensions built based on N-stopped maxima and their inverses coincide 
with the model extensions built based on N-stopped minima and their inverses, which is 
a property satisfed in particular by the extensions based on geometric stopping. 

The paper illustrates through examples the advantages of modeling extreme-valued 
data with models obtained through randomly stopped extreme extensions instead of re-
sorting to the usual generalized extreme-value model backed through large sample ar-
guments. We also use examples to help understand the rationale behind the use of the 
models obtained through the new model extension mechanisms that use the inverse of 
N-stopped maxima or minima. 

The paper is organized as follows. Section 2 defnes randomly stopped extreme 
and extreme-precursor random variables, and presents the four basic and four combined 
model transformation mechanisms that will be investigated, and Section 3 illustrates 
the use of models obtained with these transformations to deal with extreme-value data. 
Section 4 introduces the defnition of statistically stable model transformation. Section 
5 defnes extreme-reversible and auto-reversible stopping models, and Section 6 looks 
into stopping models that are closed under pgf composition, which are the ones that 
yield statistically stable transformations. Section 7 relates these and other properties 
of the stopping model with features of the corresponding model transformations, and 
Section 8 presents examples of statistically stable randomly stopped extreme extensions. 

2. Statistical models based on randomly stopped extremes 

2.1. Randomly stopped extremes and extreme precursors 

Let X be a real valued random variable defned through its cumulative distribution func-
tion, FX , and let N be a positive integer valued random variable, with Pr(N = 0) = 0, 
defned through its probability generating function (pgf), hN . Assume that one observes 
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n independent copies of X , Xi, where n is a realization of the stopping variable N inde-
pendent of the Xi. 

The N-stopped maximum of X , which we denote by maxN (X), is the random variable 
Y = max(X1, · · ·XN ) with cumulative distribution function: 

FmaxN (X) = hN(FX ), 

and the N-stopped minimum of X , which we denote by minN(X), is the random variable 
Y = min(X1, · · · ,XN) with survival function hN(SX ), where SX = 1 − FX , and therefore 
with cdf: 

FminN (X) = 1 − hN(1− FX ) = hN(FX ), 

where hN(t) = 1− hN(1 − t), which will be denoted as the conjugate function of hN(t). 
These two random variables are studied for example in Raghundanan and Patil 

(1972), Shaked (1975), Consul (1984), Gupta and Gupta (1984), Rohatgi (1987), Shaked 
and Wong (1997), in pp.155-157 of Arnold, Balakrishnan and Nagaraja (1992) and in 
Louzada, Beret and Franco (2012). 

Next, two new random variables that play a central role in what follows are intro-
duced. They arise from the fact that given any N and any X , one can always interpret X 
to be the N-stopped maximum and the N-stopped minimum of the two random variables 
defned next. 

Defnition 1. Given any stopping variable N and any real valued random variable X 
as defned above, let the N-maxprecursor of X, denoted as max−1(X), be the random N 

variable Y with cdf: 

Fmax−1(X) = h− 
N 

1(FX ),
N 

and let the N-minprecursor of X, denoted as min−1(X), be the random variable Y withN 

cdf: 
−1

Fmin−1(X) = hN (FX ). 
N 

The properties of hN and of hN presented in Section 5.1 guarantee that they are 
always invertible and therefore that F −1 and Fmin−1 are always properly defned max (X) (X)N N 

−1cdf’s. As a consequence, the random variables max (X) and min−1(X) will exist for N N 
any N and any X . 

By defnition, X is always the N-stopped maximum of max−1(X), the N-stoppedN 
minimum of min−1(X), the N-maxprecursor of maxN(X), and the N-minprecursor of N 
minN (X), 

−1 −1X = maxN(maxN (X)) = max (maxN(X)) = minN(min−1(X)) = min−1(minN(X)),N N N 

which is why we denote N-maxprecursors and minprecursors as the inverses of the N-
stopped maxima and minima. 
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2.2. Statistical model transformations based on randomly stopped 
extremes 

Let the family of distributions X = {Xθ : FXθ , θ ∈ Θ} be a statistical model defned on 
x ∈ S ⊆ R, with parameter space Θ, where FXθ is the cdf of Xθ . 

∞Let N = {Nδ : hNδ 
= ∑n=1 pn(δ )tn , δ ∈ D} be a statistical model defned on the 

positive integers, n ∈ N+, with parameter space D, where pn(δ ) = Pr(Nδ = n) and where 
hNδ 

is the pgf of Nδ . We denote N as the stopping model. 
Note that by defnition in this paper it will always be assumed that stopping models, 

N, are always such that Pr(Nδ = 0) = 0 for any δ ∈ D. 
We next defne four basic mechanisms,T(·), that transform the initial statistical model, 

X, into a new statistical model, Y = T(X), through the N-stopped maximum (minimum) 
of X ∈ X, and through the N-maxprecursors (N-minprecursors) of X ∈ X, with N ∈ N. 

Defnition 2. Given any statistical model X and any stopping model N as defned above, 
let maxN(X) and max−1(X) denote the statistical models defned as:N 

maxN(X) = {Yθ ,δ : FYθ ,δ 
= hNδ 

(FXθ ), θ ∈ Θ,δ ∈ D}, 

max−1(X) = {Yθ ,δ : FYθ ,δ 
= h−1(FXθ ), θ ∈ Θ,δ ∈ D}.N Nδ 

Likewise, let minN(X) and min−1(X) denote the statistical models defned as:N 

minN(X) = {Yθ ,δ : FYθ ,δ 
= hNδ 

(FXθ ), θ ∈ Θ,δ ∈ D}, 

−1
min−1(X) = {Yθ ,δ : FYθ ,δ 

= h (FXθ ), θ ∈ Θ,δ ∈ D}.N Nδ 

These two pairs of basic transformations do not always work as model extensions. 
Instead, the two pairs of combined transformations defned next work as model exten-
sions for any X, even when one of the two new parameters is fxed. They are the family 
of all N-stopped maximum (minimum) of all N-maxprecursors (N-minprecursors) of X , 
and viceversa. 

Defnition 3. Given any statistical model X and any stopping model N as defned above, 
−1 −1let maxN(max (X)) and max (maxN(X)) denote the statistical models defned as:N N 

−maxN(max 1(X)) = {Yθ ,δ1,δ2 : FYθ ,δ1,δ2 
◦ h−1 (FXθ ), θ ∈ Θ,δ1,δ2 ∈ D},N = hNδ2 Nδ1 

−1maxN (maxN(X)) = {Yθ ,δ1,δ2 : FYθ ,δ1,δ2 
= h−1 ◦ hNδ1 

(FXθ ), θ ∈ Θ,δ1,δ2 ∈ D}.Nδ2 

Likewise, let minN(min−1(X)) and min−1(minN(X)) denote the statistical models:N N 

−1
minN(min− 

N 
1(X)) = {Yθ ,δ1,δ2 : FYθ ,δ1,δ2 

(FXθ ), θ ∈ Θ,δ1,δ2 ∈ D},= hNδ2 
◦ hNδ1 

−1
min−1(minN(X)) = {Yθ ,δ1,δ2 : FYθ ,δ1,δ2 

(FXθ ), θ ∈ Θ,δ1,δ2 ∈ D}.N = hNδ2 
◦ hNδ1 
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Note that these statistical model transformation mechanisms can also be used to 
generate statistical models, Y, starting from a single initial random variable, Y = T(X). 

Using our notation, the Marshall-Olkin extension of X is defned to be maxN(X) ∪ 
minN(X) when N is the geometric stopping model. In Sections 7.2 and 7.4 it will be 
argued that for stopping models other than geometric the transformation maxN(X) ∪ 
minN(X) does not always work as an extension, but that under geometric stopping this 
transformation coincides with the four model transformations in Defnition 3, which 
do work as extensions under any stopping model. As a consequence, we will propose 
Defnition 3 and not maxN(·) ∪ minN(·) to be the natural way to generalize Marshall-
Olkin when using stopping models different from geometric. 

3. Examples of the use of randomly stopped extreme models 

The examples presented here illustrate the advantage in using models defned through 
the randomly stopped extreme transformations in Defnition 2 instead of using the gen-
eralized extreme-value model, and they help understand the practical relevance of the 
randomly stopped extreme-precursor models also considered in that defnition. The ex-
amples also touch on the rationale behind the use of the model extensions proposed in 
Defnition 3. 

3.1. On the usefulness of randomly stopped extreme models 

Let’s assume for example that one has data on the rainfall in the largest rain event of a 
year, Yi, for a set of m years, (y1, . . . ,ym). This kind of data is usually modeled through 
the three parameter generalized extreme-value model, because it is the limiting model 
for properly normalized extreme values when the rainfall in an event is i.i.d., and the 
number of rainfall events in a year grows. 

As an alternative way to model this kind of data one can assume that the number of 
rain events in the i-th year, Ni, is random and can be modeled through a specifc stopping 
model, N, and that the rainfall in the set of Ni events is a sample of i.i.d. observations, 
(X1, . . . ,XNi ), from a specifc model, X. In this framework the statistical model for the 
largest rainfall in the i-th year, Yi = max(X1, . . . ,XNi ), is the Y = maxN(X) considered in 
Defnition 2 for that N and that X. 

In particular, for simplicity here it will be assumed that the stopping model for the 
number of rain events, Np, is the Logarithmic(p) model covered in Example 5.2 and in 
Appendix 1, and that the model for the rainfall in an event, Xλ , is the Exponential(λ ) 
with cdf FXλ 

(x) = 1 − e−λ x . In that case, the model for the largest rainfall of the year, 
(Y1, . . . ,Ym), is the logarithmic stopped maximum of an exponential, 

log(1 − p + pe−λ y)
YLg−Exp = {Yp,λ : FYp,λ 

= hNp (FXλ 
) = ,λ ∈ (0,∞), p ∈ (0,1)}.

log(1 − p) 

To compare the use of the randomly stopped extreme models with the use of the gener-
alized extreme-value model, we have simulated a sample for m = 150 years assuming 
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that Ni is Logarithmic(p = .95) and Xi is Exponential(λ = 0.01). We have ftted the 
true two-parameter YLg−Exp model and the three parameter generalized extreme-value 
model, 

−(1−κ(x−η)/θ )1/κ 
YGEV = {Yη ,θ ,κ : FYη ,θ ,κ = e ,η ∈ (−∞,∞),θ ∈ (0,∞),κ ∈ (−∞,∞)}, 

on this data set by maximum likelihood. We have also ftted the YT B2−Exp and YET NB−Exp 

models, which are the randomly stopped maxima of an exponential sample when the 
stopping model is the truncated binomial(2, p) and the extended truncated negative bi-

log(1−pt)−r−1nomial (ETNB) with pgf hN = where r is in (−1,∞). We also ft YPC−LgNor,log(1−p)−r−1 
which is the randomly stopped maximum with N being the potential conjugate model 
considered in Example 6.1 and X being the lognormal model. 

Table 1 presents the maximum likelihood estimates of the parameters of these fve 
models together with the value of the log-likelihood at its maximum, and their AIC and 
BIC. Note that the YET NB−Exp model fts the data slightly better than the actual YLg−Exp 

model, but when r = 0 the YET NB−Exp becomes the YLg−Exp model and the likelihood 
ratio test between these two nested models does not reject the simpler actual model with 
a p − val of 0.758. 

Table 1. Maximum likelihood parameter estimates, logarithm of the likelihood at the mle, and 
AIC and BIC for the fve models considered for the data on the largest annual rainfall event. 

Model N.par MLE loglikel AIC BIC 

YLg−Exp 2 p̂ = .9574 λ̂ = .0098 −942.326 1888.65 1894.67 

YET NB−Exp 3 p̂ = .9844 r̂ = −.1177 λ̂ = .0108 −942.172 1890.34 1899.38 

YT B2−Exp 2 p̂ = .3949 λ̂ = .0063 −945.196 1894.39 1900.41 

YPC−LgNor 3 p̂ = .9352 µ̂ = 4.9109 σ̂ = 1.1475 −952.578 1911.15 1920.19 

YGEV 3 η̂ = 129.01 θ̂ = 111.25 κ̂ = −.1207 −954.256 1914.51 1923.54 

Even though the YGEV model has one more parameter than the actual YLg−Exp model, 
it fts the simulated data signifcantly worse than this model, and worse than the other 
three stopped extreme models tried, even though two of these models assume a wrong 
stopping model and one of them assumes a wrong stopping and a wrong stopped model. 
Of course that will not always be the case, and the YGEV model will do better than other 
stopped extreme models, but when one has a good guess on what the stopping and the 
stopped models could be, the corresponding randomly stopped extreme model will tend 
to do better than YGEV . 

Note also that an important advantage of using randomly stopped extreme models 
is that through them one can interpret the estimated parameter values in terms of the 
parameters of the model for the stopping variable and the parameters of the model for 
the stopped variable. That provides useful information about the frequency of rain and 
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about the distribution of the amounts of rain in them, which is lacking when the analysis 
is based on the GEV model. 

Remark: When Y = maxN(X) one has that FY = hN(FX ) and the pdf of Y is fY = 
h 
′ 
N (FX ) fX , where fX is the pdf of X . Therefore fY is a weighted version of fX and 

maximizing the likelihood function using data on Y is not any more complicated than 
doing it with data on X . 

3.2. On the usefulness of randomly stopped extreme precursors 

Lets assume here that one has data on the magnitude of the strongest earthquake on a 
given year for m1 years, (y1, . . . ,ym1 ), and data on the number of earthquakes in a year 
for m2 years, (n1, . . . ,nm2 ), where the set of years with available data might not coincide. 
Let’s also assume that one has a good model Y for Yi and a good model N for Ni. 

Like in the previous example one can pose Yi = max(X1, . . . ,XNi ) where the magni-
tudes of the earthquakes, Xj, are i.i.d. realizations of a random variable, X , and hence 
one can assume that Y = maxN(X). In such a setting one might lack data about the Xj 

and yet the interest in the analysis might be to learn about the distribution of these Xj, 
and therefore about their cdf, FX . 

In particular, the stopping model for the number of earthquakes, Ni, could for ex-
ample again be Logarithmic(p), and a good model for the magnitude of the strongest 
earthquake, Yi, could be the GEV(η ,θ ,κ) model that was discarded in the previous ex-
ample for the largest rainfall. If that was the case the magnitude of earthquakes, Xj, 
would be a sample from the random variable X that is the Np-maxprecursor of the GEV 
r.v., Yη ,θ ,κ , and the cdf of X would be: 

−FXp,η ,θ ,κ = Fmax−1(Yη ,θ ,κ )
= hN 

1(FYη ,θ ,κ ). Np p 

Hence, by obtaining maximum likelihood estimates of p and of (η ,θ ,κ) and estimates 
of their standard deviations using the data on Ni and the data on Yi one would obtain 
estimates and confdence intervals for the cdf of X , F̂Xp,η ,θ ,κ = h− 

Np 
1
ˆ 
(FY

η̂ ,θ̂ ,κ̂ 
). 

3.3. On the rationale behind using the extensions in Defnition 3 

Finally, lets assume that in either the hydrology or the seismology settings considered 
above one guesses that N0 is the stopping model for the number of events, Ni, and X0 
is the model for the magnitude of the events Xj, but it turns that the statistical model 
Y0 = maxN0 (X0) for Yi = max(X1, . . . ,XNi ) fails to ft properly the sample of extreme 
values available, (y1, . . . ,ym). 

In a case like this, if one is confdent that N0 is the right stopping model one will 
want to extend Y0 by extending X0 while still using N0 as the stopping model. The frst 
model extension in Defnition 3 does that by replacing Y0 = maxN0 (X0) by: 

−1 −1Y1 = maxN0 (maxN0 
(Y0)) = {Yξ ,δ1,δ2 : FYξ ,δ1,δ2 

= hNδ2 
◦ hNδ 

(FYξ 
), ξ ∈ Ξ,δ1,δ2 ∈ D}, 

1 
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where Ξ is the parameter space of Y0. In this way, the extended model can be posed as 
−1Y1 = maxN0 (X1) where X0 has been replaced by its extension, X1 = maxN0 
(maxN0 (X0)). 

Note that this extension also applies when Y0 is chosen without making any X0 explicit, 
−1in which case the extended model is Y1 = maxN0 (X1) with X1 = maxN0 
(Y0). 

−1By construction, the dimension of the parameter space of Y1 = maxN0 (maxN0 
(Y0)) 

is never smaller than the one of Y1 
′ 
= max−1(Y0), which is never smaller than the one of N0 

Y0. This paper investigates when is the initial model always included in the transformed 
model, and when does repeated use of these extensions fail to keep extending the model. 

4. Statistical stability of statistical model transformations 

Transformations of a statistical model, X, into a new model, Y = T(X), can be classifed 
depending on how initial and fnal models relate. Most often neither X nor Y are included 
into each other. The next defnition distinguishes three possible relationships when they 
do. 

Defnition 4. Let T(·) transform a statistical model, X, into Y = T(X). Then 

1. if X ⊂ T(X), one says that X is extended by T(·), and that T(·) extends X, 

2. if T(X) ⊂ X, one says that X is contracted by T(·), and that T(·) contracts X, 

3. if T(X) = X, one says that X is invariant under T(·). 

When X is extended by T(·) for all X, one says that T(·) is a model extension. 
Most often, using a model extension repeatedly will keep extending the model, but some 
model extensions do not further extend models beyond their frst use. These special 
model extensions are examples of the statistically stable transformations defned next. 

Defnition 5. A statistical model transformation, T(·), is said to be statistically stable if 
for any model X one has that T(X) is invariant under T(·), and so if T(T(X)) = T(X) 

for any X. 

When a model transformation is statistically stable, using that transformation twice 
in a row on any statistical model, X, has the same effect as using it just once. 

Defnition 5 generalizes to any statistical model transformation the concept of geo-
metric-extreme stability proposed in Marshall and Olkin (1997) in the special case of 
geometric stopped extreme transformations. Note that the statistical notion of stabil-
ity presented here is different from probabilistic notions of stability, like the ones used 
in Rachev and Resnick (1991) or in Fama and Roll (1968), which apply to individual 
random variables and not to families of them. 

The main purpose of the paper is to investigate the properties of the model transfor-
mations in Defnitions 2 and 3, and to determine when do they work as model extensions, 
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and when are these model extensions statistically stable in the sense of Defnition 5. This 
depends only on the characteristics of the stopping model, and in particular on whether 
they are extreme auto-reversible and/or closed under pgf composition, the way defned 
in the next two sections. 

5. Stopping models that are extreme reversible or auto-reversible 

5.1. Properties of hN , hN , h−1, and h−1 for positive count variablesN N 

A function, hN , is the probability generating function of a positive integer-valued random 
variable N, if and only if it is real valued and such that hN (0) = 0, that hN(1) = 1, and 
that it is analytic at least on [0,1), with all derivatives in that set being non-negative. 

As a consequence, hN(t) = 1 − hN(1 − t) is always such that hN(0) = 0, hN(1) = 1, 
and that it is analytic at least on (0,1], with all of its odd derivatives in that set being 
non-negative, and all of its even derivatives non-positive. If all the moments of N are 
fnite, analyticity and the declared signs of the derivatives of hN and hN hold at least on 
[0,1]. 

−1
From the characterization of hN it also follows that hN 

−1 and hN are always such that 
h−1 −1 −1 

(0) = h (0) = 0 and h−1(1) = h (1) = 1, and they are analytic at least on (0,1)N N N N 
with a frst derivative that is non-negative in that set. The second derivative of h−1 isN 

non-positive, while the second derivative of h
−1 

is non-negative.N 
−1

In particular, hN , hN , h−1 and h are always continuous and increasing on [0,1],N N 
−1

with hN and h being convex, and hN and h−1 being concave.N N 
For the limiting stopping random variable NI with Pr(NI = 1) = 1, these four func-

−1
tions coincide, hNI (t) = h−1(t) = h (t). The next result will be used later(t) = t = hNI NI NI 

on. 

Proposition 1. If N,N1 and N2 are positive integer valued random variables with pgfs 
−1

hN, hN1 and hN2 , then 1) hN = hN , 2) h− 
N 

1 = hN , and 3) hN1 ◦ hN2 = (hN1 ◦ hN2 ). 

5.2. Extreme-reversible stopping models 

As a consequence of the properties listed above, hN and h−1 can only be the pgf of aN 
positive integer valued random variable if N = NI . 

On the other hand, h
−1 

sometimes is the pgf of a non-degenerate positive integeredN 
random variable, N∗ . That leads to the following defnition. 

Defnition 6. The pair of positive integer valued random variables, (N,N∗), is said to 
−1 1be extreme reversible if hN = hN∗ , and therefore if h− = hN∗ .N 

When (N,N∗) are extreme reversible, their pgf’s need to be such that: 

hN∗ ◦ hN (t) = hN∗ ◦ hN(t) = t = hN ◦ hN∗ (t) = hN ◦ hN∗ (t), for t ∈ [0,1], 
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and in that case, max− 
N 

1(X) = minN∗ (X), min−1(X) = maxN∗ (X), and thereforeN 

X = maxN(minN∗ (X)) = minN(maxN∗ (X)) = maxN∗ (minN(X)) = minN∗ (maxN(X)). 

It is important to emphasize that extreme reversibility is a property of (N,N∗), and that 
when it holds, this property applies for any real valued random variable, X . 

= 1− (1− t)bExample 5.1: For the “potential conjugate” random variable Nb, with hNb 
−1 

= t1/bfor b ∈ (0,1], one has that h , which is a pgf when b = 1/m and m is a positive Nb 

integer. Hence, for any positive integer m, the Nm with pgf hNm = 1− (1− t)1/m, and N∗ m 
with pgf hNm 

∗ = tm, are extreme reversible. 

Example 5.2: If Nα is zero-truncated Poisson(α), with: 

αt − 1e
hNα = 

eα − 1 

for a given given α > 0, then: 

−1 1 −α )t) = hN∗h = − ln(1 − (1 − e 
α 
,Nα α 

∗which is the pgf of a r.v. Nα with a Logarithmic(α) distribution, most often parametrized 
through p = 1 − e−α . This means that each zero-truncated Poisson random variable is 
extreme reversible with one logarithmic random variable. 

If a statistical model, N∗ , is the set of all random variables N∗ that are extreme 
reversible with a random variable in N, one says that N∗ and N are a pair of extreme-
reversible models. 

−1Note that when N and N∗ are extreme reversible one has that max (·) = minN∗ (·),N 
and that min−1(·) = maxN∗ (·), and one also has that:N 

−1 1maxN(max (·)) = min−∗ (minN∗ (·)),N N 

−1 1max (maxN(·)) = minN∗ (min−∗ (·)),N N 

and viceversa. As an immediate consequence, when N and N∗ are extreme-reversible 
models the set of transformations in Defnitions 2 and 3 obtained with N and the set of 
transformations in these defnitions obtained with N∗ coincide. 

5.3. Extreme auto-reversible stopping models 

There are instances when N and N∗ are the same, hence the next defnition. 

Defnition 7. The positive integer random variable N is extreme auto-reversible if h
−1 

=N 

hN, and therefore if h−1 = hN.N 



         

       

  

    

  

 

     

  

    

           

  

  

     

 
  

    

      

  
 

 
    

  

     

54 On statistical model extensions based on randomly stopped extremes 

When N is extreme auto-reversible, 

hN ◦ hN(t) = hN ◦ hN(t) = t, for t ∈ [0,1], 

which is a condition used in stochastic comparison theorems of Shaked (1975) and 
Shaked and Wong (1997). When it holds, max−1(X)= minN(X), min−1(X)= maxN(X),N N 
and: 

X = maxN (minN(X)) = minN (maxN(X)). 

A necessary condition for a r.v. N to be auto-reversible is that Pr(N = 1) = 1/E[N]. 
The next result, providing a way to generate two auto-reversible random variables start-
ing from any pair of reversible ones, will be used to fnd examples of auto-reversible 
variables. 

Proposition 2. If (N,N∗) are a pair of extreme-reversible random variables, with pgf’s 
hN and hN∗ = hN 

−1 
, then the random variables N1 and N2, with pgfs hN1 = hN ◦ hN∗ and 

= hN∗ ◦ hN, are both extreme auto-reversible. hN2 

Proof: Given that hN(t) = 1− hN(1 − t), one has that: 

hN1 ◦ hN1 (t) = hN ◦ hN∗ ◦ hN ◦ hN∗ (t) = hN ◦ hN∗ (t) = t, 

where the last two steps use the fact that N and N∗ are extreme reversible. ■ 

Corollary 1. If N is extreme auto-reversible with pgf hN, then the random variable N3 

with pgf hN3 = hN ◦ hN is also extreme auto-reversible. 

Example 5.3: Using Proposition 2 with the random variables of Example 5.1 leads to 
hN1 = 1 − (1 − tm)1/m and to hN2 = (1 − (1 − t)1/m)m , which whenever m is a positive 
integer are the pgf’s of two auto-reversible random variables. 

Example 5.4: Using Proposition 2 with the random variables of Example 5,2 yields: 

pt 
hN1 = 

1 − (1− p)t 
, 

for 0 < p = e−α ≤ 1, which is the pgf of the geometric distribution, and 

α − eαt ),= 1− (1/α) log(1 + ehN2 

for α > 0, where N1 and N2 are extreme auto-reversible random variables. 
When all random variables N in N are extreme auto-reversible, one says that the 

stopping model N is extreme auto-reversible. 
When N is an extreme auto-reversible model one has that max−1(·) = minN(·) andN 

that min−1(·) = maxN(·), and therefore that:N 

−1max (maxN(·)) = minN(min−1(·)) = minN(maxN(·)),N N 



     

     

 

       

    
    

  

 

    
      

  
      

 

     

     

        

     

    

55 Jordi Valero and Josep Ginebra 

−1min−1(minN(·)) = maxN(max (·)) = maxN(minN(·)).N N 

Therefore, when N is an extreme auto-reversible model, the four basic and four com-
bined transformations in Defnitions 2 and 3 collapse down into two basic and two com-
bined transformations. 

6. Stopping models closed under pgf composition 

A necessary condition for the transformations in Defnitions 2 and 3 to be statistically 
stable is that the corresponding stopping model be closed under pgf composition as 
defned next. 

Defnition 8. The stopping model N = {Nδ : hNδ 
, δ ∈ D} is said to be closed under pgf 

composition, if having Nδ1 and Nδ2 with pgfs hNδ1 
and hNδ2 

belonging to N, implies that 
with pgf hNδ3 

also belongs to N.Nδ3 = hNδ1 
◦ hNδ2 

Requiring that N be closed under pgf composition is equivalent to requiring that if 
and Nδ2 belong to N, then the Nδ1 -stopped sum of Nδ2 also belongs to N, and it is Nδ1 

thus equivalent to being closed under model compounding. 

6.1. Uniparametric stopping models closed under pgf composition 

Here we restrict consideration to stopping models, N = {Nδ : hNδ 
= ∑∞ 

i=1 pi(δ )ti , δ ∈ 
D}, that i) are closed under pgf composition, ii) have a parametrization δ such that 
the pi(δ ) = Pr(Nδ = i) are continuously differentiable in δ for any i, and iii) have a 
parameter space, D, that is a connected subset of R with a non-empty interior. From 
now on, this class of stopping models is denoted in a shorthanded way just as “models 
uniparametric and closed under pgf composition.” 

By focusing on stopping models continuously differentiable and with this kind of 
parameter space, we restrict consideration to the kind of stopping models useful in 
statistical practice. In particular, we essentially require that the parameter space be a 
non-empty interval, thus avoiding stopping models closed under pgf composition like 
N = {Nk : hNk = tk , k ∈ N+}, which lead to trivially stable transformations, and we also 
avoid parameter spaces with isolated points. 

The following result, crucial in all that follows, is proved in Appendix 2 (Supple-
mentary material). 

Theorem 1. If a stopping model, N = {Nδ : δ ∈ D}, is “uniparametric and closed under 
pgf composition” as defned above, then: 

1. p1(δ ) = Pr(Nδ = 1) > 0 for all Nδ ∈ N, 

2. N can be parametrized in an identifable way through θ = Pr(Nδ = 1), or through 
η = − logPr(Nδ = 1), and 



         

  

   

 
 

       

    

    

    

    

 

     

        

    

   

   

 

       

   

56 On statistical model extensions based on randomly stopped extremes 

3. the parameter space is of the form (0,θ0] for a given θ0 ≤ 1 when using θ , and it 
is of the form H = [η0,∞) for a given η0 ≥ 0 when using η . 

From now on, we will always use η as the parametrization for models uniparametric 
and closed under pgf composition. Note that NI , with hNI (t) = t, belongs to one of these 
models if, and only if, the lower limit of the parameter space, η0, is equal to 0. 

Next consequence of Theorem 1 relates to repeated use of the transformations in 
Defnition 2. 

Theorem 2. If the stopping model, N = {Nη : hNη , η ∈ [η0,∞)}, is “uniparametric and 
closed under pgf composition” as defned above, then: 

1. hNη1 
,◦ hNη2 

= hNη2 
◦ hNη1 

= hNη1+η2 

2. hNη1 
,◦ hNη2 

= hNη2 
◦ hNη1 

= hNη1+η2 

= h−1 ◦ h−1 = h−13. h−1 ◦ h−1 ,Nη1 Nη2 Nη2 Nη1 Nη1+η2 

4. h−1 ◦ h−1 = h−1 ◦ h−1 = h−1 ,Nη1 Nη2 Nη2 Nη1 Nη1+η2 

for all η1,η2 ∈ [η0,∞). 

Proof: Given that N is closed under pgf composition, hNη1 
= hNη , with:◦ hNη2 

η = − log((hNη1 
(hNη2 

(t)))|
′ 
t=0) = − log((hN 

′ 
η1 
(hNη2 

(t))hN 
′ 

η2 
(t))|t=0) = η1 + η2, 

and commutativity follows from the commutativity of addition. The other three asser-
tions follow from the fact that, because of Proposition 1, 

,hNη1 
◦ hNη2 

= (hNη1 
◦ hNη2 

) = hNη1+η2 

h−1 ◦ h−1 )−1 = h−1 ,Nη1 Nη2 
= (hNη2 

◦ hNη1 Nη1+η2 

and 
h−1 ◦ h−1 )−1 = h−1 .Nη1 Nη2 

= (hNη2 
◦ hNη1 Nη1+η2 

■ 

The second result that follows from Theorem 1 will imply that under stopping models 
closed under pgf composition, Defnition 3 yields only two distinct extensions, and that 
the basic transformations in Defnition 2 are restricted versions of them. 

Theorem 3. If the stopping model, N = {Nη : hNη , η ∈ [η0,∞)}, is “uniparametric and 
closed under pgf composition” as defned above, then: 

h−1 ◦ h−1 
Nη2 
◦ hNη1 

= hNη1 Nη2 



     

   

  
 

    

     

         

     

    
 

 

   

     

   

           

   
 

    

 

 
         

       

            
   

         
 

 

        

 
     

 
        

      

    
  

   
   

  

  
  

 
  

 
   

 
     

57 Jordi Valero and Josep Ginebra 

for all η1,η2 ∈ [η0,∞). Furthermore, HN(t;η1,η2) = hNη1 
◦h−1 (t) can be parametrized Nη2 

in an identifable way through η = − log(H 
′ 
(0;η1,η2)) = η1 − η2, and if one denotesN 

HN,η (t) = HN(t;η1,η2) with η ∈ R, then 

1. HN,η ◦ HN,η ′ = H ′ for all η ,η 
′ ∈ R,N,η+η 

2. when η ≥ η0, then HN,η = hNη , 

= h−13. when η ≥ η0, then HN,−η ,Nη 

4. HN,η=0(t) = t. 

−1 −1
Likewise, hNη1 

◦h = h , and the properties listed above also apply for HN,η (t)=Nη2 Nη2 
◦hNη1 

◦ h−1 
(t) = 1− HN,η (1 − t).HN(t;η1,η2) = hNη1 Nη2 

Proof: The commutativity for η1,η2 ∈ [η0,∞) follows from: 

h−1 = h−1 ◦ h−1 = h−1 ◦ h−1 ◦ h−1 .Nη2 
◦ hNη1 Nη2 

◦ hNη1 
◦ hNη2 Nη2 Nη2 

◦ hNη2 
◦ hNη1 Nη2 

= hNη1 Nη2 

HN(t;η1,η2) can be parametrized through η = − log(H 
′ 
(0;η1,η2)) = η1 − η2 becauseN � �′ 1′ h−1 h′ h′ −(η1−η2)HN(0;η1,η2) = (0) · (0) = (0) = e ,Nη1Nη2 Nη1 h′ (0)Nη2 

′ ′ ′ ′and if η = η1 − η2 = η1 − η2 with η1,η2,η1,η2 ≥ η0, then: 

= h−1 ◦ hN
η ′ 

= h−1 ◦ hN
η ′

◦ h−1 ◦h−1h−1 ◦ hNη1 
◦ h−1 ◦ hNη1 

= h−1 ◦ hNη1 +N
η ′ 

= Nη2 N
η ′ 2 

Nη2 N
η ′ 2 

◦ hNη1 Nη2 N
η ′ 2 

Nη22 2 2 

h−1 ◦ hN
η ′

◦ h−1 = h−1 ◦ hN
η ′

◦ h−1 = h−1 ◦ hN
η ′N

η ′ N
η ′ N

η ′ 
, 

1 
+Nη2 Nη2 1 

◦ hNη2 Nη2 12 2 2 

= h−1 ′ ′and because if h−1 with η1,η2,η1,η2 ≥ η0, then:Nη2 
◦ hNη1 N

η ′
◦ hN

η1 
′ 

2 � �′� �′ 
h−1 ◦ hN

η ′
h−1 ◦ hNη1 

= ,′Nη2 |t=0 N
η2 1 |t=0 

′ ′and so e−(η1−η2) = e−(η1 
′−η2 

′ ) and η1 − η2 = η1 − η2. To prove the additivity of HN,η ◦ 
HN,η ′ , let β ≥ η0 + max(|η |, |η ′|) and note that: 

= (h−1 ◦ hNβ +η 
) ◦ (h−1 ◦ hN

β +η ′HN,η ◦ HN,η ′ ) = Nβ Nβ 

h−1 ◦ h−1 = h−1 
Nβ Nβ 

◦ hNβ +η 
◦ hN

β +η ′ N2β 
◦ hN2β +η+η ′ = HN,η+η ′ . 



         

    

    
 

   
 

 
     

       
 

   
 

  
 

  
 

 
 

  

     
  

   

        

   
    

      

       

    
    

     
  

     

58 On statistical model extensions based on randomly stopped extremes 

Furthermore, letting β ≥ η0 one has that for any η ≥ η0: 

= h−1 = h−1HN,η Nβ 
◦ hNβ +η Nβ 

◦ hNβ 
◦ hNη = hNη , 

= h−1 = h−1 ◦ h−1 = h−1HN,−η Nβ +η 
◦ hNβ Nη Nβ 

◦ hNβ Nη 
, 

−1 ◦ hNβ
and that, HN,η (t) = t. ■=0(t) = hNβ 

By using HN,η or HN,η with η ∈ R in a model extension of Defnition 3, one extends the 
parameter space through values of η in the whole real line and not just in H = [η0,∞). 

Many stopping models satisfy the consequences of Theorem 1 without being closed 
under pgf composition. Next, an extra necessary condition for being a stopping model 
closed under pgf composition is obtained by imposing that the t2 coeffcients of the series 

◦ h−1expansion of h−1 ◦ hNη1 
and of hNη1 

have to be equal for any η1,η2 ∈ [η0,∞).Nη2 Nη2 
Imposing that higher order term coeffcients of these expansions are equal leads to other 
necessary conditions. 

Corollary 2. If a stopping model N = {Nη : hNη , η ∈ [η0,∞)} is closed under pgf 
composition, 

Pr(Nη = 2) 
= C, for all η ∈ [η0,∞).

Pr(Nη = 1)(1 − Pr(Nη = 1)) 

6.2. Examples of stopping models closed under pgf composition 

Example 6.1: The potential conjugate model, 

N = {Np : hNp = 1 − (1− t)p, p ∈ (0,1]}, 

is closed under pgf composition with E[Np] = ∞ and Pr(Np = 1) = p, and therefore with 
η = − log p ∈ [0,∞). It includes NI but it is not auto-reversible as described in Section 
5.3. 

Example 6.2: The zero-truncated geometric model, 

N = {Np : hNp = 
pt 

, p ∈ (0,1]},
1 − (1− p)t 

is closed under pgf composition, with Pr(Np = 1) = p and η = − log p ∈ [0,∞). It 
includes NI and, as indicated in Example 5.4, it is auto-reversible. 

The next result provides a way of generating a new model closed under pgf com-
position, starting from an initial model closed under pgf composition and two random 
variables that do not belong to the initial model but whose pgf composition does. 



      

                   

                 

                     

                 
 

      

             

 
 

 
             

                

               

               
              

       

             
                    
            

 
     

            
          

                
                 

              

        

         
      

           

     
 

 
  

  

    

                      
                 

  
    

 
     

    

      
      

    

59 Jordi Valero and Josep Ginebra 

Proposition 3. Let the stopping model N = {Nη : hNη , η ∈ [η0,∞)} be closed under pgf 
composition, and let N1 and N2 be two random variables that do not belong to N but 
such that hN1 ◦ hN2 = hNα with Nα ∈ N. Then, for any given α > 0 the statistical model 

Nα = {Ñη : h ̃  = hN2 ◦ hNη−α ◦ hN1 , η ∈ [α + η0,∞)}Nη 

is also closed under pgf composition. 

Proof: If Ñη1 and Ñη2 are random variables that belong to Nα , then 

hÑη1 
◦ hÑη2 

= hN2 ◦ hNη1−α ◦ hN1 ◦ hN2 ◦ hNη2−α ◦ hN1 = 

hN2 ◦ hNη1−α ◦ hNα ◦ hNη2−α ◦ hN1 = hN2 ◦ hNη1+η2−α ◦ hN1 , 

which is the pgf of a random variable Ñη1+η2 that also belongs to Nα . ■ 

Using Proposition 3 twice in a row does not generate any new family of models. 
Next, this result is used to generate three families of stopping models closed under 

pgf composition starting from the geometric model. 

Example 6.3: If N1 is zero-truncated Poisson(α) and N2 is Logarithmic(α), as in Exam-
ple 5.2, then hN1 ◦ hN2 is the pgf of a Geometric(p = e−α ) and by Proposition 3 one has 
that for any given value of α > 0 the statistical model: 

˜ ° 
1 (eαt − 1)(eα − 1)

Nα = {Nη : hNη = ln 1 + , η ∈ [α,∞)},
α (eη − 1)(eα − eαt )+  eα − 1 

is closed under pgf composition. In the limit, when α tends to 0 this model becomes 
the geometric model, and when α tends to ∞ it becomes NI . The model Nα is extreme 
auto-reversible for every α , but it only includes NI in the limiting cases mentioned. 

Example 6.4: Let N1 be zero-truncated Negative-Binomial(αβ ,β ), with: 

(1 − (1 − e − αβ )t)−β − 1
hN1 = , 

eα − 1 

and let N2 be extended truncated Negative-Binomial(α,−1/β ) in Engen (1974), with: 

(1 − (1 − e−α)t) β 
1 

− 1
hN2 = − α , 

e β − 1 

where α ≥ 0 and β ≥ 1. Then hN1 ◦ hN2 is the pgf of a Geometric(p = e−α ), and by 
Proposition 3 one has that given any α ≥ 0 and β ≥ 1 the statistical model: 

˜ ° 1 
α+η − αβ )β η−1 

β 
(−e +1)(1−t+te +e1 − − α 
(eα−eα+η )(1−t+te β )β +eη−eα 

Nα,β = {Nη : hNη = − α , η ∈ [α,∞)}, 
1 − e β 



          

                
                  

             
    

             

 
     

      

       

       
  

    
   

                        
                  

   
  

 
   

 

   
      

           
    

                
                  

              
               

  
              

           

                  

             

 

            
 

      

                  

  

               

   

         
     

60 On statistical model extensions based on randomly stopped extremes 

is closed under pgf composition. When β tends to ∞ one obtains the models in Example 
6.3, and when α tends to 0 or β converges to 1 one obtains the geometric model in 
Example 6.2. Other than in these limiting cases, Nα,β is neither extreme auto-reversible, 
nor includes NI . 

Example 6.5: Let N1 be zero-truncated Binomial(n, p = 1 − e−α/n), with: 

α 
(1 +(e n − 1)t)n − 1

hN1 = , 
eα − 1 

and let N2 be zero-truncated Negative-Binomial(α,1/n), with: 

(1 − (1 − e−α )t)− 1 
n − 1

hN2 = α , 
e n − 1 

where α ≥ 0 and n ∈ N+ . Then, hN1 ◦ hN2 is the pgf of a Geometric(p = e−α ), and by 
Proposition 3 one has that for any given α ≥ 0 and n ∈ N+ the statistical model 

˜ ° − 1 
α α+η n

(eη −1)(−t+1+te n )n−e +1 
α − 1 

(−eα +eη )(−t+1+te n )n+eα −eα+η 

Nα,n = {Nη : hNη = α , η ∈ [α,∞)}, 
e n − 1 

is closed under pgf composition. In the limit, when n converges to ∞ one obtains the 
models in Example 6.3, and when α converges to 0, or when n is 1, one obtains the 
geometric model in Example 6.2. Other than in these limiting cases, Nα,n is neither 
extreme auto-reversible, nor includes NI , but it is extreme reversible with the Nα,β in=n 

Example 6.4. 
The next result provides a way of generating a family of statistical models closed 

under pgf composition starting from any model that is like that. 

Proposition 4. If the stopping model N = {Nη : hNη (t), η ∈ [η0,∞)} is closed under 

pgf composition then, for every given k ∈ N+ , the statistical model 

˛ ˝1/k 
Nk = {Ñη : h ̃  (t) =  hNη (t

k) , η ∈ [η0,∞)}Nη 

is also closed under pgf composition. 

Using this result with Examples 6.1 and 6.2 one has that for every k ∈ N+ the models 

˛ ˛ ˝p˝1/k 
Nk = {Np : hNp = 1 − 1 − tk , p ∈ (0,1]}, 

and ˜ ° 1/kptk 

Nk = {Np : hNp = , p ∈ (0,1]},
1 − (1 − p)tk 
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are closed under pgf composition with η = −(1/k) log p and support n = 1,k + 1,2k + 
1, . . .. 

Finally we present a family of statistical models closed under pgf composition that 
embed Examples 6.1 and 6.2 as limiting cases and all include NI . 

Example 6.6: Given any value α ∈ (0,1), the statistical model 

1 − t 
Nα = {Np : hNp = 1 − p ∈ (0,1]},

(p +(1 − p)(1 − t)α )1/α 
, 

is closed under pgf composition with E[Np] = p−1/α , with Var[Np] = ∞ and with η = 
− log p ∈ [0,∞), and it contains NI . In the limit, when α tends to 0 one obtains the model 
in Example 6.1, and when α tends to 1 one obtains the model in Example 6.2. 

7. Randomly stopped extreme-based model transformations 

7.1. Model transformations in Defnitions 2 and 3 
−1

Given the properties of hN and of h it follows that FmaxN (X)(y) ≤ FX (y) and Fmin−1 (y)N N (X) 

≤ FX (y) for all y in their domain, and therefore that maxN(X) and min−1(X) are random N 
variables always larger than X in the usual stochastic order. Furthermore, given the 
properties of hN and of h− 

N 
1 it follows that FminN (X)(y) ≥ FX (y) and Fmax−1(X)(y) ≥ FX (y),

N 

and therefore that minN(X) and max−1(X) are always smaller than X in that stochastic N 
order. 

Hence, two of the basic transformations of Defnition 2 transform any model X = 
{Xθ , θ ∈ Θ} into a model Y = {Yθ ,δ , θ ∈ Θ,δ ∈ D} with random variables Yθ ,δ stochas-
tically larger than Xθ , while the other two transform X into a model with Yθ ,δ stochasti-
cally smaller than Xθ . 

The four combined transformations of Defnition 3 transform X into a model Y with 
random variables Yθ ,δ1,δ2 that can be stochastically larger and smaller than Xθ . 

By construction, the dimension of the parameter space of models obtained through 
transformations in Defnition 3 is never smaller than the dimension of the parameter 
space of models obtained through transformations in Defnition 2, which in turn is never 
smaller than the dimension of the parameter space of the initial model. We next investi-
gate when is the initial model always included in the transformed model, and when does 
repeated use of these extensions leave the extended model unchanged. 

7.2. When do transformations work as extensions? 

A suffcient condition for basic transformations in Defnition 2 to work as extensions for 
any model, X, is that the identity belongs to the stopping model. 

Proposition 5. If NI ∈ N, with Pr(NI = 1)= 1, then the four basic model transformations 
in Defnition 2 work as a model extension of X, for any X. 
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Proof: If NI , with hNI (t) = t, belongs to N, then X ∈ X implies that X ∈ maxN(X), 
and so X ⊂ maxN(X). The same argument applies to the other three basic transforma-
tions. ■ 

If one starts with a single random variable, X = {X}, then NI ∈ N is necessary and 
suffcient for X to be included in maxN(X) and in minN(X). In general though, one can 
fnd instances of specifc models, X, included in maxN(X) or in minN(X) without NI 

belonging to N. 
On the other hand, the four combined mechanisms of Defnition 3 always work as 

model extensions, irrespective of whether NI is in N or not. 

Proposition 6. The four model transformation in Defnition 3 work as a model extension 
of X, for any X. That is so, even if one of the two new parameters, δ1 or δ2, is fxed. 

◦h−1 −1Proof: FXθ ∈ X implies that FYθ ,δ1,δ2 
= (FXθ ) ∈ maxN(max (X)) for all δ1,δ2 ∈NhNδ2 Nδ1 

◦ h−1 −1D, and in particular FXθ (FXθ ) ∈ maxN(max (X)), which means that X ⊂N 

maxN(max−1(X)). The same argument applies to the other three transformations, and 

= hNδ1 Nδ1 

N 
when any of the two new parameters is fxed. ■ 

Different from the transformations in Defnition 3, using maxN(·) ∪ minN(·) with a 
stopping model N that does not include NI does not always work as a model extension. 

7.3. When are the extensions statistically stable? 

Under general uniparametric stopping models, the basic transformations of Defnition 2 
usually add one dimension to the parameter space, while the combined transformations 
of Defnition 3 usually add two dimensions to it. 

Instead, when the stopping model is uniparametric and closed under pgf composition 
both basic as well as combined transformations add at most a single dimension, and 
the basic transformations of Defnition 2 become restricted versions of the combined 
transformations of Defnition 3 with the extra parameter, η , of the basic transformations 
taking values on a semi-line and the extra parameter, η , of the combined transformation 
taking values on the whole real line. 

Furthermore, under general stopping models repeated use of these extensions usually 
keep extending the models. Instead, when the stopping model is closed under pgf com-
position and the transformation works as an extension, then it is always a statistically 
stable extension and hence repeated use of that extension leaves the extended model 
unchanged. 

Proposition 7. If the stopping model N = {Nη : hNη , η ∈ [η0,∞)} is “uniparametric and 
closed under pgf composition” then the model transformations in Defnition 2 are such 
that: 

−11. if η0 = 0, then maxN(·), minN(·), max (·), and min−1(·) are statistical model N N 

extensions that are statistically stable, and 
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2. if η0 > 0, then maxN(X) is contracted by maxN(·), minN(X) is contracted by 
−1 −1minN(·), max (X) is contracted by max (·), and min−1(X) is contracted byN N N 

min−1(·), for all X.N 

Proof: By Theorem 2 one has that for any X, 

Y = maxN(maxN(X)) = {Yθ ,η1,η2 : FYθ ,η1,η2 
= (FXθ ), θ ∈ Θ,η1,η2 ∈ [η0,∞)} =hNη2 

◦hNη1 

{Yθ ,η : FYθ ,η = hNη (FXθ ), θ ∈ Θ,η ∈ [2η0,∞)} ⊂ =η1+η2 

{Yθ ,η : FYθ ,η = hNη (FXθ ), θ ∈ Θ,η ∈ [η0,∞)} = maxN(X), 

and so if η0 > 0, then maxN(·) contracts maxN(X). When η0 = 0, 

maxN(maxN(X)) = {Yθ ,η : FYθ ,η = hNη (FXθ ), θ ∈ Θ,η ∈ [0,∞)} = maxN(X), 

which means that maxN(·) is a statistically stable extension. The same argument applies 
to the other three transformations in Defnition 2. ■ 

The next result establishes that under uniparametric stopping models closed under 
pgf composition, there are only two distinct combined extensions and they are statisti-
cally stable. 

Proposition 8. If the stopping model N is “uniparametric and closed under pgf compo-
sition”, then Defnition 3 yields only two distinct model extensions which are: 

−1 −11. Y1 = max (maxN(·)) = maxN(max (·)), andN N 

2. Y2 = min−1(minN(·)) = minN(min−1(·)),N N 

and these two extensions are both statistically stable. Furthermore, in that case it holds 
that: 

−1 −11. the model Y1 = max (maxN(X)) is invariant under maxN(·) and max (·),N N 

2. the model Y2 = min−1(minN(X)) is invariant under minN(·) and min−1(·), andN N 

3. the transformations in Defnition 2 are restricted versions of one of these two 
extensions. 

Proof: By Theorem 3, one has that for any X, 

−1 −1Y1 = maxN (maxN(X)) = maxN(maxN (X)) = {Yθ ,η : FYθ ,η = HN,η (FXθ ), θ ∈ Θ,η ∈ R}, 
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and the stability follows from that same theorem, because: 

maxN(Y1) = {Y
θ ,η+η ′ : FY = HN,η+η ′ (FXθ ), θ ∈ Θ,η + η 

′ ∈ R} = Y1,
θ ,η+η 

′ 

−1maxN (Y1) = {Y
θ ,η−η ′ : FY

θ ,η−η 
′ = HN,η−η ′ (FXθ ), θ ∈ Θ,η − η 

′ ∈ R} = Y1. 

By Theorem 3 one also has that: 

Y2 = min− 
N 

1(minN(X)) = minN(min− 
N 

1(X)) = {Yθ ,η : FYθ ,η = HN,η (FXθ ), θ ∈ Θ,η ∈ R}, 

where HN,η (t) = 1 − HN,η (1− t), and stability follows likewise. ■ 

Corollary 3. If N is “uniparametric and closed under pgf composition”, then: 

−1 −1 −11. maxN(X) ∪ max (X) ⊂ Y1 = max (maxN(X)) = maxN(max (X)),N N N 

2. minN(X) ∪ min−1(X) ⊂ Y2 = min−1(minN(X)) = minN(min−1(X)),N N N 

and if NI ∈ N, then the models on the left and the models on the right are equal. 

7.4. What happens with stopping models both closed and extreme 
reversible? 

When two stopping models are closed under pgf composition and extreme reversible, 
Proposition 8 and the defnition of extreme reversibility lead to the next result. 

Proposition 9. If the stopping models N and N∗ are uniparametric, closed under pgf 
composition, and extreme reversible, then the two distinct statistically stable model ex-
tensions in Defnition 3 obtained with N and the ones obtained with N∗ are the same 
extensions. 

According to Proposition 8, when a stopping model is closed under pgf composition 
the four extensions in Defnition 3 collapse down into two distinct ones. The next re-
sult, stating that when a stopping model is both closed and extreme auto-reversible then 
these two extensions become a single one, is a straight consequence of the defnition of 
extreme-auto-reversibility. 

Proposition 10. If the stopping model N is uniparametric, closed under pgf composi-
tion, and extreme auto-reversible, then the four statistically stable model extensions in 
Defnition 3 coincide, 

−1 −1max (maxN(·)) = maxN(max (·)) = min−1(minN(·)) = minN(min−1(·)),N N N N 

and they coincide with minN(maxN(·)) and with maxN(minN(·)). If on top of that, NI ∈ 

N (i.e. η0 = 0), this statistically stable model extension also coincides with maxN(·) ∪ 

minN(·). 
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The geometric stopping model satisfes all the conditions of Proposition 10. As a 
consequence, the Marshall-Olkin extension of X, originally defned to be maxN(X) ∪ 
minN(X) when N is geometric, coincides with the extension of X obtained through 
Defnition 3 with geometric stopping. 

As a consequence, we consider the model extensions in Defnition 3 to be the nat-
ural way to generalize the Marshall-Olkin extension with stopping models other than 
geometric. Different from what happens if one generalized Marshall-Olkin through 
maxN(·) ∪ minN(·), by generalizing them through the transformations in Defnition 3 
one guarantees that these transformations will work as model extensions under any stop-
ping model, N. 

8. Examples of statistically stable extensions 

When one uses the model extensions of Defnition 3 with stopping models that are nei-
ther closed under pgf composition nor extreme auto-reversible, one obtains four different 
extensions that are not statistically stable, and the four basic transformations of Defni-
tion 2 are not restricted versions of them. As an example, Appendix 1 presents the four 
basic and the four combined extensions obtained when N are the zero-truncated Poisson 
or the logarithmic models. 

Here we present the model extensions in Defnition 3 obtained when the stopping 
models are the ones presented in Section 6.2. Given that these stopping models are all 
closed under pgf composition, all the extensions obtained here are statistically stable 
in the sense that applying them twice on any given model leads to the same model as 
applying them once. 

Furthermore, because of Proposition 8 another consequence of all these stopping 
models being closed under pgf composition is that for them Defnition 3 yields at most 
two distinct extensions, and that the transformations in Defnition 2 are restrictions of 
these two extensions and do not need to be considered apart. 

In three of the examples, the stopping models are not auto-reversible, and for them 
the model extension in Defnition 3 based on maxima extends X = {Xθ : FXθ , θ ∈ Θ}
into: 

−1Y1 = maxN(max (X)) = {Yθ ,η : FYθ ,η = HN,η (FXθ ), θ ∈ Θ,η ∈ (−∞,∞)},N 

and the extension in Defnition 3 based on minima extends X into: 

Y2 = minN(min−1(X)) = {Yθ ,η : FYθ ,η = HN,η (FXθ ), θ ∈ Θ,η ∈ (−∞,∞)},N 

with HN,η (·) and HN,η (·) as in Theorem 3. 
In the second and third examples the stopping models are auto-reversible, and hence 

for them these two extension mechanisms, Y1 and Y2, coincide because of Proposition 
10. The fourth and ffth families of stopping models considered can be reversible, and 
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when they are reversible they lead to the same pair of model extensions because of 
Proposition 9. 

Example 8.1: Let the stopping model be the one in Example 6.1, 

N = {Nη : hNη = 1− (1 − t)e−η 
, η ∈ [0,∞)}, 

which is not extreme auto-reversible but it includes NI . 
The extension of X obtained through maxima and precursors of maxima is: 

Y1 = maxN(max−1(X)) = {Yθ ,η : FYθ ,η = 1− (1 − FXθ )
e−η 

, θ ∈ Θ,η ∈ (−∞,∞)},N 

which is a special case of the extension in Cordeiro and Castro (2009). When one re-
stricts η ≥ 0, here one obtains Y ′ 1 = maxN(X), and when one restricts η ≤ 0 one obtains 
Y ′′ −1 −1 = max (X), and therefore in this case Y1 = maxN(X) ∪ max (X).1 N N 

When X is for example an exponential random variable, Y1 becomes the exponential 
model. Because of the stability of this extension, using it again, now on the exponential 
model, will leave that model unchanged which means that the exponential model is 
invariant under this extension. On the other hand, if X is the logistic model, then Y1 is 
the type II generalized logistic model, which will also be invariant under this extension. 

In general, when a statistical model is invariant under an extension that is stable, it 
is because that model can be obtained as the extension of a submodel of it. 

The extension of X obtained through minima and precursors of minima is: 

Y2 = minN(min−1(X)) = {Yθ ,η : FYθ ,η = (FXθ )
e−η 

, θ ∈ Θ,η ∈ (−∞,∞)},N 

which is a special case of the extension in Cordeiro, Ortega and Cunha (2013). 
When one restricts η ≥ 0, one obtains Y ′ 2 = minN(X), and when one restricts η ≤ 0 

one obtains Y ′′ = min−1(X), and therefore here Y2 = minN(X) ∪ min−1(X).2 N N 
In this case, if X is for example the Gumbel model with the location parameter fxed, 

then Y2 is the two parameter Gumbel model, and because of the stability of this extension 
the two parameter Gumbel model model will be invariant under this extension. On the 
other hand, when X is the logistic model then Y2 becomes the type I generalized logistic 
model which by stability will also be invariant under this extension. 

Example 8.2: Let the stopping model be the zero-truncated geometric in Example 6.2, 

t 
N = {Nη : hNη = , η ∈ [0,∞)},

(1 − t)eη + t 

which is extreme auto-reversible and includes NI . 
As a consequence of this auto-reversibility the extension of X obtained through max-

ima and their precursors or through minima and their precursors here coincide, and it is: 

Y = Y1 = Y2 = {Yθ ,η : FYθ ,η = 
FXθ , θ ∈ Θ,η ∈ (−∞,∞)},

(1 − FXθ )eη + FXθ 
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which is the Marshall-Olkin extension of X. There is a huge literature using this model 
extension. Here, when one restricts η ≥ 0 one obtains Y ′ = maxN(X) =  min−1(X), andN 

−1when one restricts η ≤ 0 one obtains Y ′′ = minN(X) =  max (X). As a consequence,N 
this is the only example considered here where Y = maxN(X) ∪ minN(X). 

When for example X is the logistic model with the location parameter fxed the 
extended model, Y, is the two parameter logistic model. Because of statistical stability 
of this extension, applying it again, now on the two-parameter logistic model, leaves the 
model unchanged, which means that this two parameter model is invariant under this 
extension. 

Example 8.3: Let the stopping model be the Nα in Example 6.3 for a given α ≥ 0. Like 
the geometric model, this one is also extreme auto-reversible, but it only includes NI 

when α = 0, which is when it becomes the geometric model. 
As a consequence of this auto-reversibility, the extensions of X obtained through 

maxima and their precursors and the ones obtained through minima and their precursors 
coincide and are: 

  
1 (eαFXθ − 1)(eα − 1)

Yα = {Yθ ,η : FYθ ,η = ln 1 + , θ ∈ Θ,η ∈ (−∞,∞)},
α (eη − 1)(eα − eαFXθ )+  eα − 1 

with Y ′ α = maxNα (X)=  min− 
N 

1 
α 
(X) when one restricts η ≥ α , and with Y ′′ α = minNα (X)=  

max−1 (X) when one restricts η ≤ −α . When one restricts η ∈ (−α,α) one obtainsNα 

Y ′′′ −1 
α = maxNα (maxNα 

(X)) = maxNα (minNα (X)) with η1,η2 such that η2 −η1 ∈ (−α,α), 
but this restricted transformation does not coincide with any of the transformations in 
Defnition 2. 

Different from what happens under the geometric model with α = 0, when α > 0 
neither maxNα (X) nor minNα (X) work as a model extension of X, and maxNα (X) ∪ 
minNα (X) ⊂ Yα with an inclusion often strict. Hence this is an example where maxNα (X) 
∪ minNα (X) does not work as a model extension of X, but where using the Yα from Def-
inition 3 does. 

Example 8.4: Let the stopping model be the Nα,β in Example 6.4 for a given α ≥ 0 and 
β ≥ 1. Here NI is not in the model, and the model is not auto-reversible and therefore it 
yields two different model extension mechanisms. 

The extension of X obtained through maxima and their precursors is: 
  1  β − α β 

(1−eα+η ) 1−FXθ 1−e β +eη −1 
1 −    

− α 
β 

 
(eα −eα+η ) 1−FXθ 1−e β +eη −eα 

Y1α,β 
= {Yθ ,η : FYθ ,η = − α , θ ∈ Θ,η ∈ (−∞,∞)}, 

1 − e β 

−1and here one obtains Y ′ = maxNα,β 
(X) when η ≥ α , and Y ′′ = maxNα,β 

(X) when1α,β 1α,β 
−1η ≤−α . When η ∈ (−α,α) one has that Y ′′′ = maxNα,β 

(max (X)) with η1,η2 such1α,β Nα,β 
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that η2 − η1 ∈ (−α,α), which can neither be obtained through maxNα,β 
(·) nor through 

max−1 
α,β 

(·).N 

The model extension of X obtained through minima and their precursors is: 

  1  βα β 
α+η  (eη −eα ) 1+FXθ e β −1 +eα −e 

1 −    β 

α 
(eη −1) 1+FXθ e β −1 −eη+α +1 

Y2α,β 
= {Yθ ,η : FYθ ,η = α , θ ∈ Θ,η ∈ (−∞,∞)}, 

1 − e β 

and one obtains Y ′ = minNα,β 
(X) when η ≥ α , and Y ′′ = min−1 (X) when η ≤2α,β 2α,β Nα,β 

−α . When η ∈ (−α,α) one has that Y ′′′ = minNα,β 
(min−1 (X)) with η1,η2 such2α,β Nα,β 

that η2 − η1 ∈ (−α, α), which can neither be obtained through minNα,β 
(·) nor through 

1min− 
α,β 

(·).N 
−1Here maxNα,β 

(X)∪max (X) ⊂ Y1α,β , and minNα,β 
(X)∪min−1 (X) ⊂ Y2α,β withNα,β Nα,β 

these inclusions being most often strict. 

Example 8.5: Let the stopping model be the Nα,n in Example 6.5 for a given α ≥ 0 
and n ∈ N+ . This model does not include NI and it is not extreme auto-reversible, but 
it is reversible with the Nα,β in Example 6.4. As a consequence, the model extension =n 

obtained with Nα,n through maxima and precursors of maxima, coincide with the model 
extension obtained with the Nα,β of Example 6.4 through minima and precursors of =n 

minima, and viceversa. 

9. Final comments 

The main contribution of this article is putting together a set of new concepts needed to 
defne and untangle the properties of a large family of statistical model transformation 
mechanisms that lead to statistical models useful for the analysis of extreme-value data 
and in reliability. The concepts introduced are: 

1. the notion of N-extreme precursors, which can be understood as the inverse of N-
stopped maxima and minima, and the model extension mechanisms derived from 
them (Defnitions 1, 2 and 3), which help generalize Marshall-Olkin extensions 
beyond geometric stopping, 

2. the concept of statistical stability of a statistical model extension (Defnition 5), 
which applies to any statistical model extension and not just to the ones considered 
in this paper, 

3. the idea of extreme reversible and auto-reversible stopping models (Defnitions 6 
and 7), under which the extensions based on randomly stopped maxima and their 
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inverses coincide with the extensions based on randomly stopped minima and their 
inverses, 

4. and the idea of stopping models closed under pgf composition (Defnition 8), 
which are the ones leading to statistically stable randomly stopped extreme type 
of extensions. 

All these new concepts are needed for the picture to be complete. In particular, if we 
touch on methods to generate stopping models that are auto-reversible and/or closed 
under pgf composition other than the geometric model, it is to help understand that the 
role played by geometric stopping is not as unique as one might think after reading 
Marshall Olkin (1997). 

A second contribution of this article are a set of theoretical results stating that uni-
parametric stopping models closed under pgf composition can always be parametrized 
through θ = Pr(N = 1) with a parameter space of the form (0,θ0] (Theorem 1), and 
that the pgfs of these models commute under composition among themselves and with 
their inverses (Theorems 2 and 3). These results are then used in Section 7 to determine 
conditions leading to statistically stable extensions. 

Only two of the families of statistically stable model extensions presented in Section 
8 are based on stopping models that are both closed under pgf composition and extreme 
auto-reversible. And the geometric model is the only stopping model that we know that 
shares these two features and includes NI . Nevertheless, note that in order to obtain 
statistically stable extensions through Defnition 3, one only needs that the stopping 
model be closed under pgf composition. 

The only consequence of using stopping models that, unlike the geometric model, 
are not extreme auto-reversible is that the extension based on maxima and their inverses 
does not coincide with the extension based on minima and their inverses, and using stop-
ping models that, unlike geometric, do not include NI does neither affect the statistical 
stability nor the fact that the transformations presented in Defnition 3 always work as 
an extension. 

Finally, note that our defnition of statistical stability is extremely basic and fun-
damental. A statistical model transformation is statistically stable only if using that 
transformation twice in a row on any statistical model has the same effect as using that 
transformation just once. The only reason that we can think for not fnding the notion 
of statistical stability anywhere in the statistical literature is that it might be diffcult to 
prove results of that kind outside the specifc context of randomly stopped extreme trans-
formations, and the closely related area of randomly stopped sum transformations; It is 
easy to check that stopping models closed under pgf composition also lead to randomly 
stopped sum model extensions that are statistically stable. 

We consider statistical stability to be a property that should be central in the study of 
any type of statistical model extension and not just in the study of the specifc extensions 
considered here, and we intend to keep investigating that. 
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Appendix 1: Model extensions when N is the zero truncated 
Poisson or the logarithmic model 

The zero-truncated Poisson(α) model is defned through the set of pgfs: 

eαt − 1 
N = {Nα : hNα = , α ∈ [0,∞)}. 

eα − 1 

This model includes NI and therefore both the basic transformations in Defnition 2 as 
well as the combined transformations in Defnition 3 are extensions, but this model is 
neither extreme auto-reversible, because Pr[Nα = 1] = 1/E[Nα ], nor closed under pgf 
composition, because 

α
Pr(Nα = 1) =  , 

eα − 1 

1 α2 

Pr(Nα = 2) =  ,
2 eα − 1 

and therefore it does not satisfy the necessary condition of Corollary 2 for being closed, 

Pr(Nα = 2) α 1 α2 

= + =Constant.
Pr(Nα = 1)(1 − Pr(Nα = 1)) 2 2 eα − α − 1 

The four basic extensions of X = {Xθ : FXθ , θ ∈ Θ} obtained through Defnition 2 are, 

αFXθ − 1e 
maxN(X) = {Yθ ,α : FYθ ,α = , θ ∈ Θ,α ∈ [0,∞)}, 

eα − 1 

ln(1 +(eα − 1)FXθ )−1max (X) = {Yθ ,α : FYθ ,α = , θ ∈ Θ,α ∈ [0,∞)},N α 

eα (1 − e−αFXθ )
minN(X) = {Yθ ,α : FYθ ,α = , θ ∈ Θ,α ∈ [0, ∞)}, 

eα − 1 

ln(1 +(eα − 1)(1 − FXθ ))minN 
−1(X) = {Yθ ,α : FYθ ,α = 1 − 

α 
, θ ∈ Θ,α ∈ [0,∞)}, 

and the four combined extensions of X obtained through Defnition 3 are, 

maxN(max−1(X)) = N 

˜ ° 
{Yθ ,α1,α2 : FYθ ,α1,α2 

= 
1 

(1 +(eα1 − 1)FXθ )
α
α 

1
2 
− 1 , θ ∈ Θ,α1, α2 ∈ [0,∞)}, 

eα2 − 1 

max−1(maxN(X)) = N ˛ ˆ˝ α1 FXθ − 1 ̇
 

1 (eα2 − 1) e 
{Yθ ,α1,α2 : FYθ ,α1,α2 

= ln 1 + , θ ∈ Θ,α1,α2 ∈ [0,∞)},
α2 eα1 − 1 

minN(min−1(X)) = N 
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α2   α2 
 

−α1 α1{Yθ ,α1,α2 : FYθ ,α1,α2 
= 

e
1 −

 
1 −

 
1 − e 

 
FXθ , θ ∈ Θ,α1, α2 ∈ [0,∞)}, 

eα2 − 1 

min−1(minN(X)) = N     
(eα2 − 1) eα1 (1−FXθ ) − 1  {Yθ ,α1,α2 : FYθ ,α1,α2 

= 1− 
1 

ln + 1 , θ ∈ Θ,α1, α2 ∈ [0,∞)}.
α2 eα1 − 1 

Furthermore, according to Example 5.2 the Logarithmic(p) model defned through: 

log (1 − pt)
N = {Np : hNp = , p ∈ [0,1)},

log(1 − p) 

where p = 1 − e−α , is extreme reversible with the zero-truncated Poisson model. As a 
consequence of that property, the set of model extensions obtained through Defnitions 2 
and 3 using the Logarithmic(p) model coincide with the set of extensions obtained using 
the zero-truncated Poisson model presented in this Appendix. 

The specifc extensions for the Logarithmic(p) model are the ones listed above for 
the truncated Poisson model after replacing α by − log(1 − p), and after switching 

−1maxN and min−1 and switching minN and max . For example the maxN(·) transfor-N N 
mation when N is Logaritmic(p) is the min−1 

′ (·) transformation when N 
′ 

is truncated 
N 

−1Poisson(α = − log(1 − p)), the minN(·) transformation is the max ′ (·) transformation,
N 

and so on. 
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