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Spatial autoregressive modelling of
epidemiological data: geometric mean model
proposal

Mabel Morales-Otero!-2, Christel Faes® and Vicente Nifiez-Antén*

Abstract

We propose the geometric mean spatial conditional model for fitting spatial public health
data, assuming that the disease incidence in one region depends on that of neighbour-
ing regions, and incorporating an autoregressive spatial term based on their geomet-
ric mean. We explore alternative spatial weights matrices, including those based on
contiguity, distance, covariate differences and individuals’ mobility. A simulation study
assesses the model’s performance with mobility-based spatial correlation. We illustrate
our proposals by analysing the COVID-19 spread in Flanders, Belgium, and comparing
the proposed model with other commonly used spatial models. Our approach demon-
strates advantages in interpretability, computational efficiency, and flexibility over the
commonly used and previously existing methods.

MSC: 62J05, 62H11, 62M30, 92D30, 62F15.
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1. Introduction

The analysis of spatial data has become widely spread in epidemiology, specially be-
cause location can be an important surrogate for lifestyle, environment, as well as genetic
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and other factors and, therefore, it can provide important insights for public health data
analysis. Autoregressive models proposals for analysing spatial data include the Condi-
tional Autoregressive (CAR) model, the auto-Poisson scheme (Besag, 1974) and the Si-
multaneous Autoregressive (SAR) model (Whittle, 1954), which incorporate the spatial
correlation by assuming a conditional covariance structure for an unobservable compo-
nent included in the regression structure. In addition, the spatial conditional overdisper-
sion models include a spatial lag of the response variable in the regression model speci-
fication, which allows to capture the spatial dependence directly observed on neighbour-
ing regions (see Cepeda-Cuervo, Cérdoba and Nufiez-Ant6n, 2018; Morales-Otero and
Nifiez-Antén, 2021). In the case of time series data, Zeger and Qaqish (1988) consider
Poisson models that include the logarithm of the past counts in the log-mean regression
specification, Knorr-Held and Richardson (2003) propose different autoregressive spec-
ifications when including the past counts and Held, Hohle and Hofmann (2005) propose
an autoregressive model using an identity link.

An alternative to these models is given by spatial regression models for count data
that make use of a spatially structured random effect, which is structured according to a
given spatial weights matrix. In this context, two of the most popular models in spatial
disease mapping are the Besag-York-Mollié (BYM) model (Besag, York and Mollié,
1991) and the BYM2 model (Riebler et al., 2016). The BYM model incorporates spatial
dependence by means of two unobserved latent effects, namely a spatially unstructured
random effect and a spatially structured random effect following an Intrinsic Conditional
Autoregressive (ICAR) prior (Besag, 1974). In the BYM2 model the latent effect is a
weighted average of these two random effects. Another random effects model frequently
found in the literature is the Leroux model (Leroux, Lei, and Breslow, 2000). These
models are generally estimated using Bayesian inferential methods.

In the aforementioned models, the relationship between two regions is described by
a spatial weights matrix, for which several different specifications have been developed
(see Anselin, 2002). In most cases, this matrix is fixed and previously specified, a choice
that may have an impact on the results of the analysis. Therefore, it is very important
for researchers to be able to study how to best describe the spatial structure of the data.
Traditionally, spatial weights matrices are based on the adjacency of regions or on the
distance among regions. However, there may be situations where the association is not
given by the geographical proximity but, instead, it depends on some other connectivity
structure or even on the specific characteristics of the regions under study.

In this sense, several authors have explored the use of different weights matrices.
Earnest et al. (2007) studied the influence of different specifications of spatial weights
matrices on the smoothing properties of the CAR model, obtaining considerable differ-
ences in the reported results, which provided a clear evidence about the importance of
the proper choice of the spatial structure. In addition, Case, Hines, and Rosen (1993)
proposed the use of a similarity matrix based on the inverse of the difference of the val-
ues that a given covariate takes in each region, which improved the performance of their
fitted models. Ejigu and Wencheko (2020) proposed a weights matrix that took into ac-
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count geographical proximity and covariate information simultaneously, which led to a
better justification and motivation of the spatial structure present in the data under study.

After the beginning of the pandemic, several authors concentrated their efforts on the
different statistical modelling proposals to study COVID-19 data. For example, Sahu and
Bohning (2022) proposed a joint spatio-temporal model to analyse the weekly number
of cases and deaths related to COVID-19, also presenting different specifications for the
spatial and temporal random effects. Konstantinoudis et al. (2022) analysed the weekly
number of deaths for several regions in Europe during the period going from 2015 to
2019, fitting a hierarchical Poisson model with a BYM2 specification to these data, thus,
being able to evaluate the excess of mortality during the COVID-19 pandemic. Fritz
et al. (2022) proposed a Poisson autoregressive model similar to the one in Held et al.
(2005), and analysed data from Germany on COVID-19 infections, hospitalizations and
intensive care units occupation. Additional references include D’ Angelo, Abbruzzo, and
Adelfio (2021), Johnson, Ravi, and Braneon (2021) and Natalia et al. (2022), among oth-
ers. Furthermore, purely spatial approaches have also been used, such as the proposals
in Konstantinoudis et al. (2021), where they studied the relationship between COVID-
19 related deaths and long-term exposure to air-pollution, fitting a BYM2 model to data
concerning the first wave of the disease in England. Other researchers have used the
mobility of individuals among regions as a connectivity structure for modelling COVID-
19 data. For example, Slater et al. (2022) combined geographical proximity and human
mobility data on the BYM specification to spatially model COVID-19 case counts in the
regions of Castilla-Le6én and Madrid in Spain from March to June 2020.

In this paper, we propose a geometric mean extension of the spatial conditional mod-
els in Cepeda-Cuervo et al. (2018) and Morales-Otero and Nufiez-Antén (2021) to ac-
count for the spatial autocorrelation that may be present in the data. The spatial condi-
tional model is described in Section 2.1, and the extension is motivated and introduced
in Section 2.2. Additionally, we also investigate the use of several spatial weights ma-
trices in the computation of the spatial lag and propose some new possible structures to
be implemented, which are discussed in Section 2.3. A simulation study is included in
Section 3. The usefulness of our methodological proposals and their comparison with
other commonly used spatial models is provided in Section 4. More specifically, a com-
parison with the BYM2 and Leroux spatial models is included in Section 4.3. In Section
5, we end with a discussion.

2. Methodology

This section reviews the spatial conditional overdispersion models proposed in the liter-
ature. Thereafter, we propose an extension of this model and discuss possible weights
matrices that could describe the underlying spatial dependency structure.
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2.1. Review of the spatial conditional model

The spatial conditional overdispersion models were developed to fit spatial count data,
allowing to capture overdispersion and to explain the spatial dependence that may exist
in the data, as suggested by Cepeda-Cuervo et al. (2018). These authors assume that the
dependent variable Y;, for regions i = 1,...,n, follows a conditional distribution f(y; |
y~i), Where y; represents the observed count in region i and, y~;, the values in all of the
neighbouring regions of the i-th region (without including the i-th region itself). A spatial
autoregressive term, more specifically, the lag of the response variable, is incorporated
in the regression model specification for the conditional mean E(Y; | Y.;). The inclusion
of such spatial dependence in the model can explain part of the overdispersion.

In an epidemiological context, interest often goes towards the modelling of the rates
of a disease. In this case, Morales-Otero and Nufiez-Antén (2021) assumed that the
conditioned response variable (Y; | Y., V;), the total number of cases for i = 1,...,n,
follows a Poisson distribution, with conditional mean p;, so that E(Y; | Y;,vi) = ; =
P;r;. Here, P; represents the population size and r; the disease rate in the i-th region,
for i =1,...,n. They proposed the following regression structure for the conditioned
means:

log(u;) = log(P;) +x;B + pW,Rates + v;, (D

where an autoregressive component is included for the rates, (i.e., W;Rates =

7‘:1 wjjRates ), which is a weighted average of the observed rates Rates; =y;/P;, with
weights specified by the spatial weights matrix W. Here, Xx; is a 1 X p vector of explana-
tory variables for the i-th observation, B € R” a p x 1 vector of unknown regression
parameters that need to be estimated and p € R the unknown spatial autoregressive pa-
rameter. These parameters and variables belong to the set of all real numbers, as no
constraints are imposed. In addition, a normally distributed random effect v; ~ N(0, 7),
with 7 > 0, is included to allow for additional unstructured overdispersion in the counts.
Note that the assumed spatial structure is given by the matrix W, where its elements,
w;;, are weights that represent the strength of the relationship between regions i and ;.
Section 2.3 includes a detailed description about the different ways these weights can be
defined.

2.2. Geometric mean spatial conditional model

Zeger and Qaqish (1988) proposed several models to account for temporal autocorrela-
tion in time series data, including one for count data, where they suggested the use of a
Poisson model that incorporates the logarithm of the past counts in the regression model
for the logarithm of the mean instead of the past counts. Knorr-Held and Richardson
(2003) proposed the use of the term log(y;—; + 1) in order to overcome the issue of the
nonexistence of the logarithm, so that it is equal to zero when there are no cases. Held et
al. (2005) proposed to regress the mean directly on the past counts instead, but assuming
an identity link.
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Following the ideas in Zeger and Qagqish (1988) and Knorr-Held and Richardson
(2003), we propose the following geometric mean spatial conditional model for count
data. As before, we assume a Poisson model for the conditioned response outcomes, that
is (Y; | Yoi, vi) ~ Poi(y;), with conditional mean E(Y; | Y;, V;) = W; = P;1;, following the
regression model:

log(u;) = log(P;) +x.B + pW;log(Rates) + v; )

Here, we believe it is important to mention that, in the presence of zero counts, it would
be necessary to use log(y; + 1) and log(P; + 1) when computing the observed rates (see
equation(1)). This model closely resembles the model in equation (1), but here the au-
toregressive component is a weighted average of the logarithms of the rates, instead of
the rates. It can be easily seen that the smoothed estimates of the rates are estimated as:

p
7 = exp(xX/B) exp ( w;;log(Rates J)> exp(V;)

n

1
l’l,'j 1

= exp(x}B)Ratesf exp(V;), 3)

with wj; representing the non-standardized spatial weights, n; being the number of

neighbours of region i, and Rates; being the geometric mean of the rates included
in the vector of the observed rates Rates. Note that the geometric mean of a sam-
ple X = {x1,x2,...,x,} is defined as ([T, xi)%, which can also be expressed as
exp [L Y7 log(x;)], whenx; > 0, fori=1,....n.

This can also be generalized to the case where the spatial weights matrix is given by
some criterion where the weights w;; are not necessarily equal to 0 or 1. This could be
the case, for example, in cases where we use criteria based on distance among regions
or on the mobility matrix. In these cases, we would have a weighted geometric mean of
the rates included in the vector of the observed rates, so that:

< Yo wi;log (Rates;) )

“4)

Rates; = exp .

=1 Wi

Therefore, the estimated value obtained for the spatial parameter p would represent how
the incidence rate in the regions resembles the (weighted) geometric mean of the rates in
their neighbours. Consequently, the use of the logarithm of the rates in the autoregressive
component has an important epidemiological interpretation. For a better understanding
of this effect, in Section 9 of the supplementary material, we have included a detailed
description and better motivation of the effect of the geometric mean of the rates on the

estimated disease rate, considering different values of the estimated spatial parameter.

2.3. Spatial weights matrices

As already stated, the models proposed in Section 2 do not impose or need any restric-
tions when specifying the spatial weights matrix and, therefore, they are very flexible,
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allowing the use of a wide range of spatial structures. Moreover, this flexibility makes
them a valuable tool for exploring different spatial weights matrices in a specific dataset.
This section discusses different possible choices for specifying the weights w;; used in
the proposed model in equation (2).

2.3.1. Spatial weights matrices based on contiguity

The spatial structure based on contiguity or adjacency is defined by the spatial weights
matrix W, where w;; = 1, if region i is adjacent or a neighbour to region j, and w;; = 0,
otherwise. Different criteria can be assumed to specify whether two regions are adjacent.
For example, the Queen contiguity criteria assumes that regions i and j are neighbours
if they share at least one point in their boundaries. Most commonly the spatial weights
matrix is standardized by rows, so that if region i is adjacent to region j, then w;; = 1/n;,
where n; is the number of neighbours region i has. In this way, the spatial lag W;y can be
viewed as a spatial average of the values that the variable takes in all of its neighbouring
locations.

First order contiguity is specified when we consider that regions i and j are neigh-
bours if they share at least one point in their boundaries. This specification is also known
as Queen contiguity criterion. Extending this criteria by considering that i and j are
neighbours if they share a common neighbour, we can define second order contiguity.
Third order contiguity can be specified the same way, when it is assumed that regions i
and j are adjacent if they share a common neighbour of order two. Contiguity of higher
order is also possible to specify by following these ideas.

2.3.2. Spatial weights matrices based on distance

An alternative way to define a spatial structure is to consider a spatial weights matrix
where its elements are defined as a function of the distance among the central points
of the polygons representing the regions, called the centroids, s; (i = 1,...,n). Inverse
distance weights are specified as w;; = 1/||s; —s;||, with ||s; —s;|| being the Euclidean
distance between regions i and j. In addition, in the negative exponential criteria the
weights are defined so that w;; = exp (—|[s; —s;]|).

Finally, we can also define the distance band weights, with band width given by a
critical threshold 4. In particular, it is considered that regions i and j are neighbours if
their centroid lies within the chosen band. Let s; be the centroids of the regions under
study, for a given threshold A, then w;; = 1 if the Euclidean distance between s; and s is
smaller than £, that is ||s; — s;|| < h, and O otherwise.

2.3.3. Covariate-based similarity (or difference) matrices

Ejigu and Wencheko (2020) proposed a weights matrix W, which not only takes into
account geographical proximity, but also a specific covariate’s information. Given an
environmental variable ¢; (i = 1,...,n) for n regions with centroids s;, they define the
following structure for the weights:

wij = exp{—[ale; —ej| + (1 — a)l|s; — 5[]}, )
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where « is a previously selected fixed value between zero and one, |e; — ¢;] is the abso-
lute difference in the value of the environmental covariate between regions i and j and
||si —s;|| is the Euclidean distance between the centroids of regions i and j. The elements
in the diagonal of this matrix are zero and it is row standardized. As o approaches zero,
the weights give more relevance to the geographical distance, and, when it approaches
one, the covariate differences receive more importance.

Following this idea, we also propose an alternative covariate-based similarity matrix,
where we will consider both environmental and socio-economic variables to impact the
weight amongst regions. Let W be a traditional weights matrix based on contiguity,
distance, or any other criteria, with elements w;;, and D an n x n matrix with elements
dij=0ifi= jand:

d,-j:exp(—|e,~—ej|), fOI‘i?ﬁj, (6)
We then propose the use of the matrix W o D, which is the Hadamard (or element-wise)
product of matrices W and D. In this way, small weights are given to neighbouring
regions with large differences in the values of the covariate and to distant regions, while
large weights are given to neighbouring regions with similar covariate information and
that are geographically close to each other.

A potential concern might arise regarding whether specifying covariate-based sim-
ilarity matrices in the model described by equation (2), while also including these co-
variates as independent variables, could lead to endogeneity problems. As discussed by
Case et al. (1993), when the weights matrix W is constructed based on similarities or
differences in covariates between municipalities, and the vector of observations for the
covariates captures within-municipality variations, this design ensures that the elements
of the weights matrix are orthogonal to the explanatory variables. Therefore, by con-
struction, this approach eliminates any induced correlation between the covariates and
the error term, thus addressing potential endogeneity issues.

2.3.4. Mobility matrix

The previous proposals presented here for the weights matrices are a representation of
how close (in space) and/or how similar (in terms of covariate information) regions are.
Another characteristic to define the weights matrix is to assess how much contact there
was amongst individuals in the different regions. This is of special interest when con-
sidering, for example, an outcome that depends on the contact behaviour, such as is the
case in infectious disease incidence. As a proxy for the contact behaviour, and based
on mobile phone data, the mobility amongst regions can be used. That is, each element
m;; in the mobility matrix M is defined as the mean proportion of time that people from
region i have spent in region j in a given time period. This matrix would then clearly
represent a different type of connectivity structure among regions.

2.4. Model estimation and selection

All models considered here are fitted using the integrated nested Laplace approximation
(INLA) approach, in the R-INLA package. It should be noted, however, that, in general,
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any software methodology that allows for estimation of a generalized linear mixed model
can be used to implement this model. This is a great advantage of the proposed method,
as one is not restricted to complex estimation tools for fitting spatial models.

In addition, it could be worth addressing the potential risk of spatial confounding in
the proposed geometric mean spatial model. Spatial confounding arises when covari-
ates share similar spatial patterns with unobserved spatial processes or random effects.
In our model, however, the spatial lag of the logarithm of the observed rates is used
as an explanatory variable, directly incorporating the observed spatial structure. Since
no additional spatially structured random effects are employed and the spatial structure
is assumed to be fully observed, the model theoretically mitigates the issue of spatial
confounding. The spatial dependence is captured through the geometric mean of neigh-
bouring observations, minimizing the risk of confounding spatial random effects with
covariate effects.

Model comparison is carried out by using the Watanabe-Akaike Information Crite-
rion (WAIC) (Watanabe, 2010), where the smallest values indicate the best fitting model.
Additionally, we also use the Conditional Predictive Ordinate (CPO) diagnostic (Pettit,
1990), which is a leave-one-out predictive measure. More specifically, for each obser-
vation i, the CPO; is computed, so that it reflects the posterior probability of observing
that value, given the other observations. In this way, we would be able to compute
a global value by using the sum of the logarithms for the resulting CPO; values (i.e.,
CPO = —Y" ,1og(CPO;)) As in the case of the WAIC, the model with the smallest CPO
value would be considered as the best fitting one.

Furthermore, these model selection criteria ensure a balance between model fit and
complexity by penalizing overly complex models, helping in this way to prevent possible
overfitting. To further assess the model’s generalizability, cross-validation techniques
like CPO evaluate predictive performance by measuring how well the model generalizes
to unseen data. This approach ensures that the model does not overfit the observed data
and is capable of making accurate predictions under new scenarios.

In addition, for all the estimated parameters, noninformative prior distributions are
assumed. In particular, for the fixed effects and for the precision parameters, we assume
independent normal N(0, 1 x 10°) distributions, and gamma G(1 x 1074, 1 x 10~%) dis-
tributions, respectively.

3. Simulation study

As already mentioned in Section 1, most spatial modelling applications make use of a
spatial weights matrix following traditional criteria, such as the ones based on contiguity
or distance among the regions. However, in this section, we wish to assess the perfor-
mance of our proposed models in the selection of the weights matrix, as well as to study
the sensitivity of the parameters to a misspecified neighbourhood matrix.

Therefore, we have carried out a simulation study, where we induce correlation in
the response variable following the mobility matrix structure. For this purpose, we have
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implemented a Gibbs sampling algorithm, which allowed us to generate spatially auto-
correlated Poisson data by repeatedly sampling from conditional distributions (see Jack-
son and Sellers, 2008). In our specific case, we define a set of initial values for the
parameters 3, p and 7 and, on each iteration, we draw Poisson samples, where the mean
is conditioned on the values of the previous iteration. Additional details on the algorithm
described below can be found in Section 2 in the supplementary material. We would like
to remark that the data have been simulated using the mobility matrix provided in the
dataset corresponding to the COVID-19 cases in the municipalities of Flanders, which
will be analysed in Section 4. Moreover, this spatial structure has also been used to
obtain the contiguity of order one and the inverse distance spatial weights matrices.

We have defined twelve different scenarios, given the true values for the parameters,
which can be consulted in the first column to the left in Table 1. For each case, we
have simulated S* = 500 datasets (with the number of regions n = 300), and discarded
half of them, so that S = 250 simulations for each scenario remained. Model (2) has
been fitted to each of the simulated dataset, considering three different specifications for
the spatial structure, one using the mobility matrix to compute the spatial lag, another
one using the contiguity of order one spatial weights matrix, and a third one using the
inverse distance spatial weights matrix. In addition, we have also fitted the BYM?2 and
Leroux models, both using the contiguity of order one spatial weights matrix, which is
the standard specification for such models. For further details about these models, refer
to Section 8 in the supplementary material.

Table 1 reports the bias, mean squared error (MSE) and the coverage of the estimates
obtained from fitting each model to the simulated datasets. This table includes only the
results obtained for the geometric mean model using the three different spatial weights
structures mentioned above. The BYM2 and Leroux models have different formulations
and produce estimates that are not directly comparable to those of the geometric mean
model. Therefore, they are excluded from this analysis and will be considered later when
evaluating and comparing the models’ goodness of fit in the specific dataset under study.

For the scenarios where the parameters’ true values were f = —2 and p = 0.5 (i.e.,
first two scenarios), the smallest bias was obtained for the estimations for the model us-
ing the mobility matrix, indicating that this is the model where the resulting estimates are
closer to the true values of the parameters. In these scenarios the coverage percentages
in the models using the mobility matrix are also the largest, indicating that most of the
credible intervals of the estimated parameters in these models contain the true values.
However, when the true value for 8 changed to —0.5 (i.e., third and fourth scenarios),
the smallest bias and the best coverage were obtained for the model using the contigu-
ity criterion for the weights matrix, which seems to suggests that the value given to the
intercept 3 is having a significant impact on the results. This substantial influence can
be attributed to the fact that the model does not include any covariates apart from the
offset (i.e., the logarithm of the population in each municipality), the intercept itself, and
the spatial lag of the logarithm of the rates. Consequently, the intercept determines the
baseline level of expected counts across municipalities, directly influencing the scale of
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the predicted counts, the overall variability, and the relative contribution of the spatial
lag term.

In the scenarios where the true value for p is set to 0.2, the bias of the estimates
considerably increases when using the mobility matrix. In fact, the estimations with
smallest bias are obtained for the model using the inverse distance criterion for the spatial
matrix and, moreover, the coverage is very high for all the models. This can be due to
the fact that here we are setting a small value for the spatial parameter and, thus, forcing
the mobility connectivity structure to have a smaller relevance in the simulated data.

In addition, for the parameters’ true values B = —2 and p = 0.9, the smallest bias
of the estimates and the best coverage were also obtained for the mobility matrix. Given
that, in this case, we are setting a large value for the spatial parameter, more relevance is
given to this structure. However, when 8 = —0.5 and p = 0.9, the models using the con-
tiguity and the mobility matrix produce similar values for the bias of the estimations and
the coverage for the contiguity matrix highly improves, meaning that, for this specific
setting, the spatial structure is not so clearly defined.

The sensitivity of the results to small variations in the parameter p is due to the
absence of additional covariates or effects in the model, making, therefore, the spatial
autoregressive term the primary source of variation. The corresponding result would be
that even minor adjustments to p can significantly influence the dynamics of the overall
model and the resulting estimates.

Finally, from the results included in Table 1, for the precision parameter 7, no sig-
nificant changes were observed in the bias of the estimations or in the coverage when
changing this parameter’s value from 5 to 15.

Regarding the predictive accuracy of the models, we can evaluate it by computing
the mean squared predictive error (MSPE) of the simulated rates for each simulated
dataset [MSPES =y", (ri(s) — ?l@)z / n] (Carroll et al., 2015). In this way, we can obtain
an average for the model fitted for each of the 250 datasets generated for each scenario,
so that MSPE = ¥'5_| (MSPE;)/S. Note that the models with the lowest values of the
MSPE would be considered as the best fitting ones. The results obtained are included
in Table 2, where we can see that, in general, the MSPE is small in every scenario, but
the smallest values are mostly obtained for the models in which the mobility matrix was
used to compute the spatial lag of the log-rates.

Moreover, we have counted the number of times that the information criteria values
were smaller in each case so that we can check how many times the “correct” model
was selected as the best fitting one. Most of the times, with a very few exceptions, the
model where the mobility matrix was used, was selected with the smallest WAIC and
CPO values. This indicates that we can indeed, based on the model selection criteria,
select the underlying true neighbourhood matrix. These results are included in Table S1
in the supplementary material.

From the results obtained in the simulation study, we can conclude that it is essential
to evaluate whether the spatial structure used in a study is the most adequate one. For
most of the spatial modelling applications, the spatial weights matrix employed to de-
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Table 2. Average of the MSPE values obtained from the models using different weights matrices,
fitted to the simulated datasets.

True values ‘ Mobility Contiguity Inverse distance =~ BYM?2 Leroux

p=-2,p=051=15 ‘ 2.323e-06 5.173e-05 5.601e-05 1.977e-05 1.973e-05

B=-2,p=0571=5 ‘ 9.659e-07 2.994e-05 3.190e-05 1.092e-05 1.042e-05

p=-05p=051=5 ‘ 1.765e-06 1.223e-05 1.212e-05 5.402e-06 5.622e-06

B=-05p=05-1=15 ‘ 2.292e-06 4.135e-05 4.204e-05 1.696e-05 1.724e-05

B=-2,p=02,7=15 ‘ 2.764e-06 1.793e-05 1.796e-05 1.555e-05 1.554e-05

p=-2,p=02,7=5 ‘ 1.683e-06 1.004e-05 1.005e-05 8.350e-05 8.402e-05

B=-05p=02,7=5 ‘ 3.518e-06 6.521e-06 6.540e-06 5.322e-06 5.516e-06

p=-05p=02,t=15 ‘ 5.497e-06 1.594e-05 1.598e-05 1.291e-06 1.336e-06

B=-2,p=09,7=15 ‘ 6.441e-06  9.049¢-06 9.917e-06 1.735e-05 1.852e-05

B=-2,p=09,7=5 ‘ 4.254e-06 9.247e-06 9.594e-06 1.714e-05 2.275e-06

p=-05p=09,7=5 ‘ 8.752e-07 5.207e-05 4.737e-05 2.345e-05 6.582e-06

B=-05p=09,7=15 ‘ 2.551e-06 1.071e-04 9.862e-05 1.788e-05 1.482e-05

scribe the spatial structure of the data under study is the one following the contiguity of
order one criterion. However, we believe it has been clearly shown that this is not always
necessarily the best choice.

In this specific study, it has been shown that when the mobility matrix is the under-
lying structure, and the model is misspecified, in general, the bias of the estimations is
larger than the bias obtained for the model using the mobility matrix. Moreover, infor-
mation criteria values such as the WAIC and CPO and, also predictive accuracy measures
such as the MSPE, have favoured the correctly specified model, selecting it as the best
fitting one in almost all cases. Overall, the simulation study illustrates the fact that our
proposed model effectively identifies the correct spatial structure when properly speci-
fied. However, this does not imply that our model is the correct or best model under a
given setting, which was not the original purpose in the simulation study.

4. lllustration of methodology

4.1. Data Exploration

We investigate the spatial distribution of COVID-19 from September 2020 until January
2021 amongst the Flemish municipalities. Figure 1 shows the observed incidence of
COVID-19 per 100,000 inhabitants in Flanders’ municipalities in the time period con-
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sidered, which was the time of the second wave in Belgium. It can be observed that
not all municipalities presented the same impact in the second COVID-19 wave. In this
study, we wish to assess whether the spatial correlation pattern of the incidence during
the second wave of the disease was linked to any social demographics.

Incidence

1266 to 2131
2131 to 2570
2570 to 2983
2983 to 3353

I 3353 to 3899

B 3899 to 4394

B 4394 to 5092

Il 5092 to 8023

Figure 1. Spatial distribution of the incidence of COVID-19 per 100,000 inhabitants in Flanders’
municipalities from 2020-09-01 to 2021-01-31.

The data under analysis includes information on the 300 municipalities of Flanders
in Belgium, which is available at the website of the Belgian Institute for Public Health
(Sciensano) (https://epistat.wiv-isp.be/covid/). Table 3 includes some descriptive statis-
tics for the variables available across municipalities. The outcome of interest is the
number of confirmed COVID-cases from 2020-09-01 to 2021-01-11, summarized by
the variable N.cases. The population size in the municipality is denoted as P, and
incidence is the number of COVID-19 cases in this time period per 100,000 inhabi-
tants. There are also two additional variables available which can be considered as prox-
ies for the socio-economic status and demography of the municipality. These are the
percentage of households with a discount on the electricity meter (budgetmeters)
and the percentage of single-parent households (single_house).

4.2. Model Estimates

The COVID-19 incidence map in Figure 1 suggests the presence of spatial autocor-
relation in the data, as municipalities with similar values of COVID-19 incidence are
grouped together in space. Therefore, in order to be able to characterize the spatial pat-
tern of the second wave of COVID-19 in the data under study, we will further analyse
these data by implementing spatial models that account for the spatial dependence. In
addition, since we have seen the importance of testing different spatial structures for the
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Table 3. Descriptive statistics for the variables available across municipalities

Median Mean SD Min. Max.
N.cases 544.000 801.243  1570.136 1.000 24387.000
P 15036.500 22097.143 36156.404 79.000 529247.000
incidence 3358.868 3564.184 1235.740 1265.823  8023.070
single_house 7.885 8.021 1.245 5.300 15.300
budgetmeters 1.125 1.229 0.678 0.000 6.860

weights matrix with the simulation study carried out in the previous section, here we
will also explore different possible choices for the spatial weights matrix to be included
in the fitted models.

We fit both the spatial conditional normal Poisson model in equation (1) (Section 2.1)
and the proposed geometric mean spatial conditional normal Poisson model in equation
(2) (Section 2.2). As one of our objectives is to be able to select the spatial structure
that best accommodates the spatial underlying process in the data, we use the different
weights matrices described in Section 2.3, and compare the fitting of the different models
by using their WAIC and CPO values. Note that, in this specific application, we do not
include any covariates in the linear predictor, as we focus on the spatial modelling by
means of the autoregressive terms and on the comparison of the performance of such
models.

We believe it is important to mention the fact that, at the beginning of this research,
the variables available were included in the model as covariates. However, the results
obtained suggested that they did not offer any improvements in models’ fitting in terms
of information criteria. Therefore, in this specific study, we decided to only employ them
when computing the proposed weights matrices based on similarities. It should also be
noted that, in this study, we do not aim to identify any risk factor in the spreading of the
infection, but to investigate the spatial correlation that may exist in the data and find the
structures that best accommodate it.

The results obtained for the fitting of these models are included in Tables 4 and 5,
which were fitted by considering ten different options for the weights matrix. First, we
have used the spatial weights matrices based on the adjacency among municipalities
(contiguity of first and third order). Second, weights were based on the distance among
the centroids of the municipalities (inverse distance, negative exponential distance and
distance band method). Third, the weights matrices were based on the product between
covariate differences and traditional spatial weights, as proposed in Section 2.3. For
these similarity matrices, the spatial weights matrices considered are the ones based on
contiguity or first order, and that based on the distance band. The variables used to mea-
sure whether municipalities have a similar socio-economic status are single_house
and budgetmeters. Finally, the mobility matrix was also considered. The heatmaps
for these matrices are included in Figure S1 in the supplementary material, where we
can clearly see the different structures they represent.
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Table 4. Results obtained after fitting the spatial conditional normal Poisson models to the
COVID-19 incidence data in Flanders, for the different weights matrices considered.

A

A

Weights matrix ‘ ‘ B p T
Contiguity of order 1 WAIC =2947.7 | Mean -4.378 27.928 27.830
CPO =1807.4 SD (0.041) (1.121) (2.440)
95% CI (-4.459,-4.297) (25.728,30.129) (23.287,32.868)
Contiguity of order 3 WAIC =2942.7 | Mean -4.425 29.220 18.100
CPO = 1868.4 SD (0.060) (1.637) (1.542)
95% CI (-4.542,-4.307) (26.006,32.434) (15.217,21.271)
Inverse distance WAIC =2941.2 | Mean -5.649 63.083 19.319
CPO =1859.3 SD (0.120) (3.333) (1.646)
95% CI (-5.885,-5.413) (56.538,69.629) (16.242,22.705)
Negative exponential WAIC =2941.4 | Mean -6.006 73.132 12.660
CPO =1921.9 SD (0.221) (6.152) (1.062)
95% CI (-6.440,-5.573) (61.049,85.214) (10.672,14.843)
Distance band WAIC =2938.4 | Mean -4.514 31.480 24.663
CPO =1822.6 SD (0.051) (1.370) (2.120)
95% CI (-4.613,-4.415) (28.790,34.172) (20.706,29.031)
W oD single_house and | WAIC =2946.9 | Mean -4.349 27.121 26.956
Contiguity of order 1 CPO =1813.9 SD 0.041) (1.112) (2.355)
95% CI (-4.430,-4.268) (24.938,29.305) (22.567,31.814)
W oD single_house and | WAIC =2940.3 | Mean -4.490 30.970 27.609
Distance band CPO=1811.3 SD (0.046) (1.246) (2.396)
95% CI (-4.580,-4.400) (28.524,33.418) (23.142,32.550)
W o D budgetmeters and | WAIC =2949.4 | Mean -4.360 27.500 29.005
Contiguity of order 1 CPO =1814.6 SD (0.040) (1.074) (2.556)
95% CI (-4.438,-4.282) (25.392,29.609) (24.247,34.284)
W o D budgetmeters and | WAIC = 2938.7 | Mean -4.513 31.657 27.009
Distance band CPO =1813.9 SD (0.047) (1.293) (2.336)
95% CI (-4.606,-4.420) (29.120,34.196) (22.652,31.823)
Mobility WAIC =2972.6 | Mean -4.270 25.113 22.010
CPO =1849.2 SD (0.045) (1.213) (1.974)
95% CI (-4.357,-4.182) (22.726,27.491) (18.342,26.093)

When comparing the models’ fit related to the different weights matrices included in
Table 4, it can be seen that parameter estimates can differ considerably. The estimated
value for the autoregressive parameter p is large and statistically significant, according to
its 95% credible interval, in all models, an indication that there is a clear sign for the ex-
istence of spatial autocorrelation. Interpretation of the value of the estimated parameter

is difficult, however.
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Table 5. Results obtained after fitting the geometric mean spatial conditional normal Poisson
models to the COVID-19 incidence data in Flanders, for the different weights matrices consid-

ered.
Weights matrix ‘ B p 7
Contiguity of order 1 WAIC =2945.1 | Mean -0.786 0.770 22.488
CPO =1920.6 SD (0.122) (0.036) (1.938)
95% CI (-1.027,-0.546) (0.699,0.840) (18.871,26.479)
Contiguity of order 3 WAIC =2942.1 | Mean -0.885 0.740 15.724
CPO =1918.5 SD (0.162) (0.048) (1.331)
95% CI (-1.202,-0.567) (0.647,0.834) (13.235,18.459)
Inverse distance WAIC = 2941 Mean 3.753 2.108 19.144
CPO =1857.8 SD (0.380) (0.112) (1.630)
95% CI  (3.006,4.500) (1.887,2.328) (16.097,22.494)
Negative exponential WAIC =2941.4 | Mean 4.919 2451 12.709
CPO =1922.7 SD (0.695) (0.205) (1.067)
95% CI  (3.554,6.283) (2.049,2.854) (10.712,14.900)
Distance band WAIC =2938.6 | Mean 0.241 1.071 25.000
CPO =1820.9 SD (0.157) (0.046) (2.151)
95% CI (-0.067,0.550) (0.980,1.161) (20.985,29.432)
W oD single_house and | WAIC =2945.3 | Mean -0.811 0.762 22.535
Contiguity of order 1 CPO =1905.7 SD 0.121) (0.036) (1.943)
95% CI (-1.048,-0.573) (0.692,0.832) (18.909,26.536)
W oD single_house and | WAIC =2940.4 | Mean 0.216 1.062 28.129
Distance band CPO =1806.3 SD (0.144) (0.042) (2.445)
95% CI (-0.066,0.498) (0.979,1.145) (23.571,33.170)
W oD budgetmeters and | WAIC =2946.3 | Mean -0.780 0.773 23.622
Contiguity of order 1 CPO =1928.9 SD (0.118) (0.035) (2.045)
95% CI (-1.012,-0.549) (0.702,0.839) (19.809,27.838)
W oD budgetmeters and | WAIC =2938.9 | Mean 0.268 1.076 27.501
Distance band CPO =18123 SD (0.148) (0.043) (2.380)
95% CI  (-0.023,0.558) (0.991,1.162) (23.058,32.402)
Mobility WAIC =2960.6 | Mean -1.766 0.482 14.842
CPO =1915.7 SD (0.115) (0.034) (1.275)
95% CI (-1.993,-1.541) (0.416,0.548) (12.460,17.466)

The information criteria values obtained (i.e., WAIC) for the fitting of these mod-
els indicate that the best fit for the models accounting only for contiguity or distance
amongst municipalities is for the distance band spatial weights (WAIC = 2938.4). With
regard to the predictive accuracy measure (i.e., CPO), the best fitting model is the one
using the contiguity of order one criterion (CPO = 1807.4). As for the models taking into
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account the similarity in socio-economic status, the combination of single_house or
budgetmeters and distance bands are the best fitting models (WAIC = 2940.3 and
CPO = 1811.3, and WAIC = 2938.7 and CPO = 1813.9, respectively).

For the model considering the mobility matrix, we can conclude that, according to
the information and the predictive criteria, this model did not provide a good fit for the
dataset under study. Unlike the simulation study, where the spatial pattern was explic-
itly constructed based on the mobility matrix and the models accurately identified this
structure, in this case, the mobility structure does not seem to be the underlying structure
driving the spatial pattern of incidence rates in the dataset under study.

Similar results are observed in Table 5, where the fitting of these models appears
to be very similar, according to the WAIC and CPO values, to the ones reported in
Table 4. Here, the models with the smallest values were the ones using the distance
band weights matrix (WAIC = 2938.6 and CPO = 1820.9) and similarity matrix of the
distance band and single_house or budgetmeters (WAIC = 2940.4 and CPO =
1806.3, and WAIC =2938.9 and CPO = 1812.3, respectively). In these weights matrices,
larger weights are specified for municipalities that lie within the distance band and have
similar values of these variables. Therefore, the fitting of these models suggests that this
structure could be properly explaining the underlying spatial dependence, assuming that
the variables considered represent the socio-economic or demographic characteristics of
the population in these municipalities.

Regarding the spatial autoregressive parameter p, here the spatial lag is also signifi-
cant for all the fitted models, indicating that the spatial autocorrelation is being properly
captured. However, we believe it is relevant to mention that, while this finding provides
some clear evidence that the autoregressive structure of the model is appropriate for cap-
turing the spatial autocorrelation present in the dataset under study, it does not provide
any argument in favor of this being the best or the correct model.

Moreover, the interpretation of parameter p can be useful in order to quantify how
much the spatial structure considered can influence the resemblance of the incidence
rate in a municipality to the geometric mean of the incidence rates of its neighbours.
In the models where the distance band matrix was used, the parameter p has posterior
mean approximately equal to 1, and, thus, in this setting, we find that the rate in a
municipality is close to the geometric mean of the rates in the municipalities within
the distance band. For the models where the specified weights matrix was either the
exponential or the inverse distance, the estimated values of p was approximately equal
to two, suggesting that the rate in a municipality is the square of the geometric mean
of the rates of its neighbours. For the remaining models, this parameter’s estimated
value was smaller than one. For example, in the model with the mobility matrix, it was
p = 0.4823, suggesting that, for this connectivity structure, the rate in a municipality is
approximately the squared root of the geometric mean of the rates of its neighbours.

Figure 2 includes the maps of the predicted incidence obtained after fitting the geo-
metric mean spatial conditional normal Poisson models using the spatial weights matrix
following the distance band criterion and the similarity spatial matrix combining the dif-
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Predicted incidence
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(a) Predicted incidence obtained from the model using the spatial matrix fol-
lowing the distance band criterion, fitted to the COVID-19 data in Flanders.
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(b) Predicted incidence obtained from the model using the similarity spatial
matrix combining the differences in the variable budgetmeters and the dis-
tance bands criterion, fitted to the COVID-19 data in Flanders.

Figure 2. Predicted incidence obtained from some of the geometric mean spatial conditional
normal Poisson models considered, fitted to the COVID-19 data in Flanders.

ferences in the variable budgetmeters and the distance bands criterion, which were
considered as the best fitting ones. Similar maps obtained for some of the other fitted
models have been included in Figure S2 in the supplementary material. If we compare
these maps with the observed incidence map shown in Figure 1, we can see that, in
general, the predictions are quite accurate, as they are very similar to the observed inci-
dence. In addition, when compared to each other, we note that the predictions obtained
differ only for a small number of municipalities. In addition, scatterplots of the observed
versus the predicted rates, obtained from the fitting of these models are included in Fig-
ure S3 in the supplementary material, where it can be seen that the fitted models show
high accuracy in the prediction of the incidence rates.
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We can also check the distributional assumptions in the fitted models, which is a
Poisson distribution, where the overdispersion is accommodated by means of the inclu-
sion of a random effect in the regression for the mean. This can be achieved by using
the distribution_check function from the R package inlatools (Onkelinx, 2019).
Here, simulations are drawn from the model and the empirical cumulative distribution
function (eCDF) is computed for the observed response and for the simulated data, so
that they can be compared.

Figure 3 includes the plots which illustrate these comparison results for two of the
fitted models. In each figure, the black line is the result of dividing the eCDF of the
observed data by the median of the eCDF’s of the simulated datasets, and the grey bands
represent the 95% credible intervals of the simulated data. In addition, the dotted hori-
zontal line placed at 100% indicates where the ratio of the eCDF’s is equal to one. If the
eCDF is inside the credible intervals, which is the case for all of the models fitted here,
the assumed distribution in the model seems to be a plausible one. Moreover, given that
the eCDF is quite close to the reference line, these results suggest that the data is well
modelled with this distribution.

175% -
175% =

150% =

125% -

&
observed / expected

100% — - -

observed / expected

100% == -

75% =

| | | 250 500 750
250 500 750

(a) Geometric mean model where the spatial (b) Geometric mean model for the similar-
matrix follows the distance band criterion. ity spatial weights matrix combining distance

band and the variable budgetmeters.

Figure 3. Distribution check for some of the fitted models.

Additionally, Figure 4 shows the marginal posterior distribution of the parameters
estimated from some of the fitted models, where it can be verified that the normality
assumption holds. Distribution checks and the posterior marginals for the estimated pa-
rameters in the geometric mean models corresponding to the spatial weights matrix fol-
lowing the contiguity of order one criterion and the mobility matrix have been included
in Figures S4 and S5 in the supplementary material.

After examining the results obtained in this section, we could conclude that, on the
one hand, with the proposed model we present an appealing interpretation of the spa-
tial parameter, given by the geometric mean of the incidence rates. We have shown
how this interpretation can change for the different fitted models, indicating how much
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the spatial structure considered explains the spatial autocorrelation by means of the ge-
ometric mean of the rates in the neighbouring municipalities. On the other hand, by
examining different weights matrices, we can have a better idea of the underlying spatial
dependence structure of the data. When the similarity matrices based on the distance
band were used, the information criteria values were similar to the model considering
the traditional distance band matrix. Therefore, taking into account that they provide
similar predictions and similar fit, we believe that, for the specific data set considered,
this weights matrix could represent a proper choice for modelling the spatial underlying
structure of the data.

Finally, we would like to briefly mention that the computation time needed for fitting
the models in this section is of approximately one second for each one of the fitted
models.

Intercept p T
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(a) Geometric mean model where the spatial matrix follows the distance band

criterion.
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(b) Geometric mean model for the similarity spatial weights matrix combining
distance band and the variable budgetmeters.

Figure 4. Posterior densities from the parameters estimated for some of the fitted models.

4.3. Comparison to the BYM2 and Leroux spatial models

In this section, we will fit the BYM?2 and Leroux spatial models to the COVID-19 data
in Flanders. Additional details about these models have been included in Section 8 in the
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supplementary material. We should stress here that one of our main goals in this work
is to present the geometric mean proposal as a new extension of the spatial conditional
Poisson model in Cepeda-Cuervo et al. (2018). In these models, the interpretation of
the spatial parameters is different from that of the BYM?2 or the Leroux models. Fur-
thermore, the spatial conditional and the geometric mean models offer the possibility
of specifying any weights matrix in a straightforward way, as it is used for computing a
spatial lag. In our view, this feature makes these models more appealing for investigating
different spatial structures, which is another one of our goals in this work. In the case of
the BYM?2 or the Leroux models, this is not straightforward due to its limitations, where
the assumed spatial structure needs to be symmetric, which is not the case, for example,
for the mobility matrix we have employed before. Although it is known that any matrix
can be symmetrized, this would include carrying out a previous process, which is not
required when fitting our proposed models.

Nevertheless, we believe it can be useful to compare the performance of the pro-
posed methods with that of the BYM?2 and Leroux models, often employed in disease
mapping applications. Therefore, in order to specify the BYM?2, we consider the model
in equation (S3) in the supplementary material, where, in order to specify the penal-
ized complexity priors and following Simpson et al. (2017), for the precision parame-
ter T, we assume that Prob(1/,/7; > 0.2/31) = 0.01 and, for the mixing parameter ¢,
Prob(¢, < 0.5) = 2/3. Additionally, for the Leroux model, we consider the formulation
in equation (S4) in the supplementary material. In this case, the prior for the precision
parameter T, is a noninformative Gamma distribution (i.e., 7, ~ G(1 X 1074, 1 x 10_4))
and the prior for the spatial parameter ¢, is a uniform distribution over the unit interval
(¢, ~U(0,1)) (Lee, 2013). For the intercept, we assume a noninformative normal prior
distribution (i.e., B ~ N(0,1 x 103)). Note that, in the BYM2 and Leroux models, the
spatial weights matrix is defined based on contiguity of order one. The results obtained
after fitting these models to the COVID-19 data in Flanders are included in Table 6 and
Table 7.

Table 6. Results obtained after fitting the BYM2 model to the COVID-19 incidence data in
Flanders.

\ Mean  SD 95% CI

B | -3.3924 0.004 (-3.400,-3.385)
1, | 12.057 1.131 (9.885,14.318)
o | 0976  0.020 (0.923,0.998)

WAIC =2932.9 CPO = 1802.6

Results reported in the previous section indicate that the smallest WAIC resulted
for the model using the distance band criterion (WAIC = 2938.6) and the smallest CPO
was obtained for the geometric mean model using the similarity matrix of the distance
band and budgetmeter (CPO = 1806.3). As for the BYM2 model, we can see that
the WAIC and CPO values obtained are slightly lower than those obtained for the pre-
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Table 7. Results obtained after fitting the Leroux spatial model to the COVID-19 incidence data
in Flanders.

\ Mean  SD 95% CI

[§ -3.189  0.258  (-3.590,-2.544)
T, | 6907 0.603 (5.777,8.150)
6. | 0989 0.017 (0.942,0.999)

WAIC =2954.8 CPO = 1958.7

vious models. In contrast, the Leroux model yielded larger information criteria values
when compared to both the spatial conditional and BYM?2 models, suggesting a weaker
goodness of fit to the data under study.

In addition, the value obtained for the mixing parameter in the BYM2 model, ¢, =
0.976, suggests that more than 97% of the variability in the data is being explained by
the spatially structured effect. Similarly, the estimated spatial parameter in the Leroux
model, ¢, = 0.989, indicates that most of the variability in the data is explained by the
spatial component, which is consistent with the BYM?2 estimate of ¢;.

Regarding the predictive accuracy of these models, Figure 5 includes the maps of the
predicted incidence obtained from their fitting, where we can see that the predictions are
very accurate when compared to the map of the observed incidence in Figure 1, and also
very similar to the ones obtained in the previous section for our proposed methods (see
Figure 2). The scatterplots of the observed versus the predicted incidence rates are also
included in Figure S3(i) in the supplementary material, showing some issues in some of
the municipalities.

The computation time needed to fit the BYM2 model was of approximately ten sec-
onds, while the Leroux model required five seconds. In contrast, for the spatial condi-
tional and geometric mean models fitted in Section 4.2, the runtime was of about one
second for each one of the fitted models. Moreover, in the simulation study carried out
in Section 3, we fitted 250 models for each one of the 12 scenarios. When fitting the Ler-
oux and the BYM2 models to these datasets, the runtime increased by a factor of five and
ten, respectively, when compared to the geometric mean model. In other words, fitting
the Leroux model for the entire simulation study would require more than 4 hours, while
the BYM2 model would take about 8 hours, compared to the 50 minutes required for
the geometric mean model. Therefore, in our view, this is an important advantage worth
mentioning for our proposed models over the BYM?2 and the Leroux models, which are
commonly used in this area of research.

Despite the fact that the information criteria values favoured the BYM2 model and
that its predictive accuracy is similar to the one from the geometric mean model, we
restate our goal here of presenting the geometric mean proposal, which can be viewed
as an alternative to the Leroux, BYM and BYM2 models, and to investigate the weights
matrices which best reflect the spatial underlying process.



Mabel Morales-Otero, Christel Faes and Vicente Nunez-Anton 115

Predicted incidence

1502 to 2168
2168 to 2580
2580 to 2991
2991 to 3350
W 3350 to 3919
W 3919104393

‘ Il 4393 to 5067
W 5067 to 7958

e
(a) Predicted incidence obtained from the BYM?2 model, fitted to the COVID-19 data in Flanders.

Figure 5. Predicted incidence obtained from the BYM2 and Leroux models, fitted to the COVID-
19 data in Flanders.
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(b) Predicted incidence obtained from the Leroux model, fitted to the COVID-19 data in Flanders.

Figure 5. Predicted incidence obtained from the BYM?2 and Leroux models, fitted to the COVID-
19 data in Flanders (Continued).

There are situations where the spatial conditional models may offer a better fit than
the Leroux, BYM and BYM2 models, or viceversa. We believe that the choice of the
model to fit should depend on the specific objective of the study. For example, Morales-
Otero and Nuifiez-Antén (2021) reported that, given by the information criteria values
obtained, the spatial conditional and the BYM and BYM?2 models offered a very similar
fitting to the infant mortality data they studied. In addition, in Morales-Otero, Gémez-
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Rubio and Nufiez-Anton (2022), the spatial conditional models were employed in order
to illustrate a new fitting approach in INLA.

5. Discussion

In this work, we have studied the geographical spread of COVID-19 cases in the munici-
palities of Flanders in Belgium during the period going from September 2020 to January
2021. In order to be able to fit these data, we have considered the Bayesian spatial con-
ditional model proposals (Cepeda-Cuervo et al., 2018), which assume the incidence of
cases in a municipality is conditional on the incidence of cases in neighbouring munic-
ipalities. These models offer a great flexibility and also the possibility that considering
different weights matrices can be done in a direct and very simple way.

We have proposed a geometric mean spatial conditional model, where the logarithm
of the rates is employed for computing the spatial lag component. This model offers
an interpretation of the spatial parameter p based on the geometric mean, representing
how the incidence rate in one municipality resembles the geometric mean of the rates in
its neighbours. For the spatial weights matrix used in these models, we have proposed
alternative specifications based on a combination of the similarity of a certain variable
in the different locations and the distance between these municipalities. In addition,
we have also considered the connectivity structure given by the mobility of individuals
among the municipalities under study.

In order to further assess the performance of the proposed methods when the corre-
lation among the different municipalities under study is given by a connectivity pattern,
such as, for example, the mobility matrix, we have carried out a simulation study where
we induce correlation in the response variable based on this structure. In this study, we
have been able to appropriately verify that the models are able to identify the correct
spatial structure for most of the cases under study.

In the application to the COVID-19 data in Flanders, we have compared these pro-
posed models with the ones in Cepeda-Cuervo et al. (2018) finding that our proposal
provides a similar fit, but offers a particular and straightforward interpretation within
the context of the specific dataset under analysis. We have fitted these models by using
different definitions for the weights matrices employed to compute the spatial lag, such
as the classical ways of accounting for spatial autocorrelation based on contiguity and
distance, as well as the similarities weights matrices we proposed as alternatives. In ad-
dition, we have also studied the use of the mobility matrix in modelling the COVID-19
incidence data in Flanders, which is given by the proportion of time individuals from
one municipality spent in a different one.

In order to provide a comparison of the proposed models with other commonly used
models employed in disease mapping applications, we have also fitted the BYM2 and
Leroux spatial models to the dataset under study. Results indicate that the BYM2 model
provides a similar fit based on information criteria and demonstrates a comparable pre-
dictive accuracy to that of our proposed model. However, it may be the case that the
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dataset under study may not be the best example to fully justify the need for the geo-
metric mean spatial conditional model. Moreover, we believe it is important to clarify
that this study initially began as an investigation into whether the mobility connectivity
structure could explain the spatial pattern of COVID-19 incidence across municipalities
in Flanders. Addressing this question required flexible spatial models, such as the spatial
conditional models proposed by Morales-Otero and Nufiez-Anton (2021), which moti-
vated the use of this approach in our analysis. Subsequently, we developed the geometric
mean spatial conditional model, adjusting the primary focus of this work to introducing
it as a flexible alternative for capturing spatial dependencies and making it possible to
specify different spatial structures.

The BYM?2 model is well established in this area of research but, at the same time,
we also believe that our model provides interpretational advantages, computational sim-
plicity, and the flexibility to easily test for different spatial structures. For example, the
computation time required to estimate a geometric mean model is ten and five times
shorter, respectively, than the one needed for the BYM?2 or Leroux models. We consider
this to be a significant advantage of our proposed model, particularly when researchers
need to perform simulation studies, such as the one presented in Section 3, where a large
number of models must be efficiently fitted. Nonetheless, we recognize that further ap-
plications are necessary to fully evaluate the benefits and limitations of the geometric
mean model in different contexts, and we intend to continue exploring this model pro-
posal structure in our future research.

In any case, overall results suggest a strong spatial correlation in the dataset under
study, which is best explained by the distance band spatial weights matrix. This im-
plies that, for the data under study, the underlying spatial process is well explained and
modelled by this spatial structure.

Finally, we believe it it worth mentioning that, in this work, we focus on the analysis
of the data corresponding to the time period of the COVID-19 second wave in Flanders,
and we have tried to characterize the overall spatial pattern believed to be present in
this wave. Our main interest for this specific application does not include transmission.
However, for future research we are also interested in performing comparison with the
spatial pattern of additional COVID-19 waves in the area under study, by being able to
propose a spatio-temporal approach, which is out of the scope of this paper. We have
already developed spatio-temporal extensions of the spatial conditional models and spe-
cific proposals are in the process of being finalized, so that they are part of a different
manuscript to be later submitted for possible publication. Moreover, one of our objec-
tives is to be able to apply these proposals to the comparisons of the different waves in
the dataset we have analysed here.
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