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Abstract 

We propose the geometric mean spatial conditional model for ftting spatial public health 
data, assuming that the disease incidence in one region depends on that of neighbour-
ing regions, and incorporating an autoregressive spatial term based on their geomet-
ric mean. We explore alternative spatial weights matrices, including those based on 
contiguity, distance, covariate differences and individuals’ mobility. A simulation study 
assesses the model’s performance with mobility-based spatial correlation. We illustrate 
our proposals by analysing the COVID-19 spread in Flanders, Belgium, and comparing 
the proposed model with other commonly used spatial models. Our approach demon-
strates advantages in interpretability, computational effciency, and fexibility over the 
commonly used and previously existing methods. 
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1.  Introduction  

The analysis of spatial data has become widely spread in epidemiology, specially be-
cause location can be an important surrogate for lifestyle, environment, as well as genetic 
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and other factors and, therefore, it can provide important insights for public health data 
analysis. Autoregressive models proposals for analysing spatial data include the Condi-
tional Autoregressive (CAR) model, the auto-Poisson scheme (Besag, 1974) and the Si-
multaneous Autoregressive (SAR) model (Whittle, 1954), which incorporate the spatial 
correlation by assuming a conditional covariance structure for an unobservable compo-
nent included in the regression structure. In addition, the spatial conditional overdisper-
sion models include a spatial lag of the response variable in the regression model speci-
fcation, which allows to capture the spatial dependence directly observed on neighbour-
ing regions (see Cepeda-Cuervo, Córdoba and Núñez-Antón, 2018; Morales-Otero and 
Nú ̃  on, 2021). In the case of time series data, Zeger and Qaqish (1988) consider nez-Ant´ 
Poisson models that include the logarithm of the past counts in the log-mean regression 
specifcation, Knorr-Held and Richardson (2003) propose different autoregressive spec-
ifcations when including the past counts and Held, Höhle and Hofmann (2005) propose 
an autoregressive model using an identity link. 

An alternative to these models is given by spatial regression models for count data 
that make use of a spatially structured random effect, which is structured according to a 
given spatial weights matrix. In this context, two of the most popular models in spatial 
disease mapping are the Besag-York-Mollié (BYM) model (Besag, York and Mollié, 
1991) and the BYM2 model (Riebler et al., 2016). The BYM model incorporates spatial 
dependence by means of two unobserved latent effects, namely a spatially unstructured 
random effect and a spatially structured random effect following an Intrinsic Conditional 
Autoregressive (ICAR) prior (Besag, 1974). In the BYM2 model the latent effect is a 
weighted average of these two random effects. Another random effects model frequently 
found in the literature is the Leroux model (Leroux, Lei, and Breslow, 2000). These 
models are generally estimated using Bayesian inferential methods. 

In the aforementioned models, the relationship between two regions is described by 
a spatial weights matrix, for which several different specifcations have been developed 
(see Anselin, 2002). In most cases, this matrix is fxed and previously specifed, a choice 
that may have an impact on the results of the analysis. Therefore, it is very important 
for researchers to be able to study how to best describe the spatial structure of the data. 
Traditionally, spatial weights matrices are based on the adjacency of regions or on the 
distance among regions. However, there may be situations where the association is not 
given by the geographical proximity but, instead, it depends on some other connectivity 
structure or even on the specifc characteristics of the regions under study. 

In this sense, several authors have explored the use of different weights matrices. 
Earnest et al. (2007) studied the infuence of different specifcations of spatial weights 
matrices on the smoothing properties of the CAR model, obtaining considerable differ-
ences in the reported results, which provided a clear evidence about the importance of 
the proper choice of the spatial structure. In addition, Case, Hines, and Rosen (1993) 
proposed the use of a similarity matrix based on the inverse of the difference of the val-
ues that a given covariate takes in each region, which improved the performance of their 
ftted models. Ejigu and Wencheko (2020) proposed a weights matrix that took into ac-
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count geographical proximity and covariate information simultaneously, which led to a 
better justifcation and motivation of the spatial structure present in the data under study. 

After the beginning of the pandemic, several authors concentrated their efforts on the 
different statistical modelling proposals to study COVID-19 data. For example, Sahu and 
Böhning (2022) proposed a joint spatio-temporal model to analyse the weekly number 
of cases and deaths related to COVID-19, also presenting different specifcations for the 
spatial and temporal random effects. Konstantinoudis et al. (2022) analysed the weekly 
number of deaths for several regions in Europe during the period going from 2015 to 
2019, ftting a hierarchical Poisson model with a BYM2 specifcation to these data, thus, 
being able to evaluate the excess of mortality during the COVID-19 pandemic. Fritz 
et al. (2022) proposed a Poisson autoregressive model similar to the one in Held et al. 
(2005), and analysed data from Germany on COVID-19 infections, hospitalizations and 
intensive care units occupation. Additional references include D’Angelo, Abbruzzo, and 
Adelfo (2021), Johnson, Ravi, and Braneon (2021) and Natalia et al. (2022), among oth-
ers. Furthermore, purely spatial approaches have also been used, such as the proposals 
in Konstantinoudis et al. (2021), where they studied the relationship between COVID-
19 related deaths and long-term exposure to air-pollution, ftting a BYM2 model to data 
concerning the frst wave of the disease in England. Other researchers have used the 
mobility of individuals among regions as a connectivity structure for modelling COVID-
19 data. For example, Slater et al. (2022) combined geographical proximity and human 
mobility data on the BYM specifcation to spatially model COVID-19 case counts in the 
regions of Castilla-Leon´ and Madrid in Spain from March to June 2020. 

In this paper, we propose a geometric mean extension of the spatial conditional mod-
els in Cepeda-Cuervo et al. (2018) and Morales-Otero and Nú ̃  on (2021) to ac-nez-Ant´ 
count for the spatial autocorrelation that may be present in the data. The spatial condi-
tional model is described in Section 2.1, and the extension is motivated and introduced 
in Section 2.2. Additionally, we also investigate the use of several spatial weights ma-
trices in the computation of the spatial lag and propose some new possible structures to 
be implemented, which are discussed in Section 2.3. A simulation study is included in 
Section 3. The usefulness of our methodological proposals and their comparison with 
other commonly used spatial models is provided in Section 4. More specifcally, a com-
parison with the BYM2 and Leroux spatial models is included in Section 4.3. In Section 
5, we end with a discussion. 

2.  Methodology  

This section reviews the spatial conditional overdispersion models proposed in the liter-
ature. Thereafter, we propose an extension of this model and discuss possible weights 
matrices that could describe the underlying spatial dependency structure. 
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2.1. Review of the spatial conditional model 

The spatial conditional overdispersion models were developed to ft spatial count data, 
allowing to capture overdispersion and to explain the spatial dependence that may exist 
in the data, as suggested by Cepeda-Cuervo et al. (2018). These authors assume that the 
dependent variable Yi, for regions i = 1, . . . ,n, follows a conditional distribution f (yi |
y∼i), where yi represents the observed count in region i and, y∼i, the values in all of the 
neighbouring regions of the i-th region (without including the i-th region itself). A spatial 
autoregressive term, more specifcally, the lag of the response variable, is incorporated 
in the regression model specifcation for the conditional mean E(Yi | Y∼i). The inclusion 
of such spatial dependence in the model can explain part of the overdispersion. 

In an epidemiological context, interest often goes towards the modelling of the rates 
of a disease. In this case, Morales-Otero and N´nez-Anton´ (2021) assumed that theu˜ 
conditioned response variable (Yi | Y∼i,νi), the total number of cases for i = 1, . . . ,n, 
follows a Poisson distribution, with conditional mean µi, so that E(Yi | Y∼i,νi) = µi = 
Piri. Here, Pi represents the population size and ri the disease rate in the i-th region, 
for i = 1, . . . ,n. They proposed the following regression structure for the conditioned 
means: 

log(µi) = log(Pi)+ xT 
i β + ρWiRates + νi, (1) 

where an autoregressive component is included for the rates, (i.e., WiRates = 
∑

n
j=1 wi jRates j), which is a weighted average of the observed rates Rates j = y j/P j, with 

weights specifed by the spatial weights matrix W. Here, xi is a 1× p vector of explana-
tory variables for the i-th observation, β ∈ ℜp a p × 1 vector of unknown regression 
parameters that need to be estimated and ρ ∈ ℜ the unknown spatial autoregressive pa-
rameter. These parameters and variables belong to the set of all real numbers, as no 
constraints are imposed. In addition, a normally distributed random effect νi ∼ N(0,τ), 
with τ > 0, is included to allow for additional unstructured overdispersion in the counts. 
Note that the assumed spatial structure is given by the matrix W, where its elements, 
wi j, are weights that represent the strength of the relationship between regions i and j. 
Section 2.3 includes a detailed description about the different ways these weights can be 
defned. 

2.2. Geometric mean spatial conditional model 

Zeger and Qaqish (1988) proposed several models to account for temporal autocorrela-
tion in time series data, including one for count data, where they suggested the use of a 
Poisson model that incorporates the logarithm of the past counts in the regression model 
for the logarithm of the mean instead of the past counts. Knorr-Held and Richardson 
(2003) proposed the use of the term log(yt−1 + 1) in order to overcome the issue of the 
nonexistence of the logarithm, so that it is equal to zero when there are no cases. Held et 
al. (2005) proposed to regress the mean directly on the past counts instead, but assuming 
an identity link. 
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Following the ideas in Zeger and Qaqish (1988) and Knorr-Held and Richardson 
(2003), we propose the following geometric mean spatial conditional model for count 
data. As before, we assume a Poisson model for the conditioned response outcomes, that 
is (Yi | Y∼i,νi)∼ Poi(µi), with conditional mean E(Yi | Y∼i,νi) = µi = Piri, following the 
regression model: 

log(µi) = log(Pi)+xT 

iβ +ρWi log(Rates)+νi (2) 

Here, we believe it is important to mention that, in the presence of zero counts, it would 
be necessary to use log(y j +1) and log(Pj +1) when computing the observed rates (see 
equation(1)). This model closely resembles the model in equation (1), but here the au-
toregressive component is a weighted average of the logarithms of the rates, instead of 
the rates. It can be easily seen that the smoothed estimates of the rates are estimated as: 

° ˛ ̂ρ n 
T 1 ∗ r̃i = exp(xi β̂ )exp ∑ wi j log(Rates j) exp(νi)ni j=1 

ρ̂
T ˆ= exp(x β )Ratesi exp(νi), (3)i 

∗with wi j  representing the non-standardized spatial weights, ni being the number of 

neighbours of region i, and Ratesi being the geometric mean of the rates included 
in the vector of the observed rates Rates. Note that the geometric mean of a sam-

1 
ple X = {x1,x2, . . . ,xn} is defned as (∏n 

1 xi) n , which can also be expressed as˝ ˙ i= 
exp 1 

n ∑
n
i=1 log(xi) , when xi > 0, for i = 1, . . . ,n. 

This can also be generalized to the case where the spatial weights matrix is given by 
some criterion where the weights wi j  are not necessarily equal to 0 or 1. This could be 
the case, for example, in cases where we use criteria based on distance among regions 
or on the mobility matrix. In these cases, we would have a weighted geometric mean of 
the rates included in the vector of the observed rates, so that: 

° ˛ 
∗∑n

j=1 wi j log(Rates j)
Ratesi = exp (4)∗∑n 

j=1 wi j  

Therefore, the estimated value obtained for the spatial parameter ρ would represent how 
the incidence rate in the regions resembles the (weighted) geometric mean of the rates in 
their neighbours. Consequently, the use of the logarithm of the rates in the autoregressive 
component has an important epidemiological interpretation. For a better understanding 
of this effect, in Section 9 of the supplementary material, we have included a detailed 
description and better motivation of the effect of the geometric mean of the rates on the 
estimated disease rate, considering different values of the estimated spatial parameter. 

2.3. Spatial weights matrices 

As already stated, the models proposed in Section 2 do not impose or need any restric-
tions when specifying the spatial weights matrix and, therefore, they are very fexible, 
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allowing the use of a wide range of spatial structures. Moreover, this fexibility makes 
them a valuable tool for exploring different spatial weights matrices in a specifc dataset. 
This section discusses different possible choices for specifying the weights wi j used in 
the proposed model in equation (2). 

2.3.1. Spatial weights matrices based on contiguity 

The spatial structure based on contiguity or adjacency is defned by the spatial weights 
matrix W, where wi j = 1, if region i is adjacent or a neighbour to region j, and wi j = 0, 
otherwise. Different criteria can be assumed to specify whether two regions are adjacent. 
For example, the Queen contiguity criteria assumes that regions i and j are neighbours 
if they share at least one point in their boundaries. Most commonly the spatial weights 
matrix is standardized by rows, so that if region i is adjacent to region j, then wi j = 1/ni, 
where ni is the number of neighbours region i has. In this way, the spatial lag Wiy can be 
viewed as a spatial average of the values that the variable takes in all of its neighbouring 
locations. 

First order contiguity is specifed when we consider that regions i and j are neigh-
bours if they share at least one point in their boundaries. This specifcation is also known 
as Queen contiguity criterion. Extending this criteria by considering that i and j are 
neighbours if they share a common neighbour, we can defne second order contiguity. 
Third order contiguity can be specifed the same way, when it is assumed that regions i 
and j are adjacent if they share a common neighbour of order two. Contiguity of higher 
order is also possible to specify by following these ideas. 

2.3.2. Spatial weights matrices based on distance 

An alternative way to defne a spatial structure is to consider a spatial weights matrix 
where its elements are defned as a function of the distance among the central points 
of the polygons representing the regions, called the centroids, si (i = 1, . . . ,n). Inverse 
distance weights are specifed as wi j = 1/∥si − s j∥, with ∥si − s j∥ being the Euclidean 
distance between regions i and j. In addition, in the negative exponential criteria the 
weights are defned so that wi j = exp(−∥si − s j∥). 

Finally, we can also defne the distance band weights, with band width given by a 
critical threshold h. In particular, it is considered that regions i and j are neighbours if 
their centroid lies within the chosen band. Let si be the centroids of the regions under 
study, for a given threshold h, then wi j = 1 if the Euclidean distance between si and s j is 
smaller than h, that is ∥si − s j∥ < h, and 0 otherwise. 

2.3.3. Covariate-based similarity (or difference) matrices 

Ejigu and Wencheko (2020) proposed a weights matrix W, which not only takes into 
account geographical proximity, but also a specifc covariate’s information. Given an 
environmental variable ei (i = 1, . . . ,n) for n regions with centroids si, they defne the 
following structure for the weights: 

wi j = exp{−[α|ei − e j| +(1− α)∥si − s j∥]}, (5) 
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where α is a previously selected fxed value between zero and one, |ei − e j| is the abso-
lute difference in the value of the environmental covariate between regions i and j and 
∥si −s j∥ is the Euclidean distance between the centroids of regions i and j. The elements 
in the diagonal of this matrix are zero and it is row standardized. As α approaches zero, 
the weights give more relevance to the geographical distance, and, when it approaches 
one, the covariate differences receive more importance. 

Following this idea, we also propose an alternative covariate-based similarity matrix, 
where we will consider both environmental and socio-economic variables to impact the 
weight amongst regions. Let W be a traditional weights matrix based on contiguity, 
distance, or any other criteria, with elements wi j, and D an n × n matrix with elements 
di j = 0 if i = j and: 

di j = exp(−|ei − e j|), for i ̸= j, (6) 

We then propose the use of the matrix W ◦ D, which is the Hadamard (or element-wise) 
product of matrices W and D. In this way, small weights are given to neighbouring 
regions with large differences in the values of the covariate and to distant regions, while 
large weights are given to neighbouring regions with similar covariate information and 
that are geographically close to each other. 

A potential concern might arise regarding whether specifying covariate-based sim-
ilarity matrices in the model described by equation (2), while also including these co-
variates as independent variables, could lead to endogeneity problems. As discussed by 
Case et al. (1993), when the weights matrix W is constructed based on similarities or 
differences in covariates between municipalities, and the vector of observations for the 
covariates captures within-municipality variations, this design ensures that the elements 
of the weights matrix are orthogonal to the explanatory variables. Therefore, by con-
struction, this approach eliminates any induced correlation between the covariates and 
the error term, thus addressing potential endogeneity issues. 

2.3.4. Mobility matrix 

The previous proposals presented here for the weights matrices are a representation of 
how close (in space) and/or how similar (in terms of covariate information) regions are. 
Another characteristic to defne the weights matrix is to assess how much contact there 
was amongst individuals in the different regions. This is of special interest when con-
sidering, for example, an outcome that depends on the contact behaviour, such as is the 
case in infectious disease incidence. As a proxy for the contact behaviour, and based 
on mobile phone data, the mobility amongst regions can be used. That is, each element 
mi j in the mobility matrix M is defned as the mean proportion of time that people from 
region i have spent in region j in a given time period. This matrix would then clearly 
represent a different type of connectivity structure among regions. 

2.4. Model estimation and selection 

All models considered here are ftted using the integrated nested Laplace approximation 
(INLA) approach, in the R-INLA package. It should be noted, however, that, in general, 
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any software methodology that allows for estimation of a generalized linear mixed model 
can be used to implement this model. This is a great advantage of the proposed method, 
as one is not restricted to complex estimation tools for ftting spatial models. 

In addition, it could be worth addressing the potential risk of spatial confounding in 
the proposed geometric mean spatial model. Spatial confounding arises when covari-
ates share similar spatial patterns with unobserved spatial processes or random effects. 
In our model, however, the spatial lag of the logarithm of the observed rates is used 
as an explanatory variable, directly incorporating the observed spatial structure. Since 
no additional spatially structured random effects are employed and the spatial structure 
is assumed to be fully observed, the model theoretically mitigates the issue of spatial 
confounding. The spatial dependence is captured through the geometric mean of neigh-
bouring observations, minimizing the risk of confounding spatial random effects with 
covariate effects. 

Model comparison is carried out by using the Watanabe-Akaike Information Crite-
rion (WAIC) (Watanabe, 2010), where the smallest values indicate the best ftting model. 
Additionally, we also use the Conditional Predictive Ordinate (CPO) diagnostic (Pettit, 
1990), which is a leave-one-out predictive measure. More specifcally, for each obser-
vation i, the CPOi is computed, so that it refects the posterior probability of observing 
that value, given the other observations. In this way, we would be able to compute 
a global value by using the sum of the logarithms for the resulting CPOi values (i.e., 
CPO = −∑

n
i=1 log(CPOi)) As in the case of the WAIC, the model with the smallest CPO 

value would be considered as the best ftting one. 
Furthermore, these model selection criteria ensure a balance between model ft and 

complexity by penalizing overly complex models, helping in this way to prevent possible 
overftting. To further assess the model’s generalizability, cross-validation techniques 
like CPO evaluate predictive performance by measuring how well the model generalizes 
to unseen data. This approach ensures that the model does not overft the observed data 
and is capable of making accurate predictions under new scenarios. 

In addition, for all the estimated parameters, noninformative prior distributions are 
assumed. In particular, for the fxed effects and for the precision parameters, we assume 
independent normal N(0,1 × 105) distributions, and gamma G(1 × 10−4 ,1 × 10−4) dis-
tributions, respectively. 

3. Simulation study 

As already mentioned in Section 1, most spatial modelling applications make use of a 
spatial weights matrix following traditional criteria, such as the ones based on contiguity 
or distance among the regions. However, in this section, we wish to assess the perfor-
mance of our proposed models in the selection of the weights matrix, as well as to study 
the sensitivity of the parameters to a misspecifed neighbourhood matrix. 

Therefore, we have carried out a simulation study, where we induce correlation in 
the response variable following the mobility matrix structure. For this purpose, we have 
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implemented a Gibbs sampling algorithm, which allowed us to generate spatially auto-
correlated Poisson data by repeatedly sampling from conditional distributions (see Jack-
son and Sellers, 2008). In our specifc case, we defne a set of initial values for the 
parameters β , ρ and τ and, on each iteration, we draw Poisson samples, where the mean 
is conditioned on the values of the previous iteration. Additional details on the algorithm 
described below can be found in Section 2 in the supplementary material. We would like 
to remark that the data have been simulated using the mobility matrix provided in the 
dataset corresponding to the COVID-19 cases in the municipalities of Flanders, which 
will be analysed in Section 4. Moreover, this spatial structure has also been used to 
obtain the contiguity of order one and the inverse distance spatial weights matrices. 

We have defned twelve different scenarios, given the true values for the parameters, 
which can be consulted in the frst column to the left in Table 1. For each case, we 
have simulated S∗ = 500 datasets (with the number of regions n = 300), and discarded 
half of them, so that S = 250 simulations for each scenario remained. Model (2) has 
been ftted to each of the simulated dataset, considering three different specifcations for 
the spatial structure, one using the mobility matrix to compute the spatial lag, another 
one using the contiguity of order one spatial weights matrix, and a third one using the 
inverse distance spatial weights matrix. In addition, we have also ftted the BYM2 and 
Leroux models, both using the contiguity of order one spatial weights matrix, which is 
the standard specifcation for such models. For further details about these models, refer 
to Section 8 in the supplementary material. 

Table 1 reports the bias, mean squared error (MSE) and the coverage of the estimates 
obtained from ftting each model to the simulated datasets. This table includes only the 
results obtained for the geometric mean model using the three different spatial weights 
structures mentioned above. The BYM2 and Leroux models have different formulations 
and produce estimates that are not directly comparable to those of the geometric mean 
model. Therefore, they are excluded from this analysis and will be considered later when 
evaluating and comparing the models’ goodness of ft in the specifc dataset under study. 

For the scenarios where the parameters’ true values were β = −2 and ρ = 0.5 (i.e., 
frst two scenarios), the smallest bias was obtained for the estimations for the model us-
ing the mobility matrix, indicating that this is the model where the resulting estimates are 
closer to the true values of the parameters. In these scenarios the coverage percentages 
in the models using the mobility matrix are also the largest, indicating that most of the 
credible intervals of the estimated parameters in these models contain the true values. 
However, when the true value for β changed to −0.5 (i.e., third and fourth scenarios), 
the smallest bias and the best coverage were obtained for the model using the contigu-
ity criterion for the weights matrix, which seems to suggests that the value given to the 
intercept β is having a signifcant impact on the results. This substantial infuence can 
be attributed to the fact that the model does not include any covariates apart from the 
offset (i.e., the logarithm of the population in each municipality), the intercept itself, and 
the spatial lag of the logarithm of the rates. Consequently, the intercept determines the 
baseline level of expected counts across municipalities, directly infuencing the scale of 
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the predicted counts, the overall variability, and the relative contribution of the spatial 
lag term. 

In the scenarios where the true value for ρ is set to 0.2, the bias of the estimates 
considerably increases when using the mobility matrix. In fact, the estimations with 
smallest bias are obtained for the model using the inverse distance criterion for the spatial 
matrix and, moreover, the coverage is very high for all the models. This can be due to 
the fact that here we are setting a small value for the spatial parameter and, thus, forcing 
the mobility connectivity structure to have a smaller relevance in the simulated data. 

In addition, for the parameters’ true values β = −2 and ρ = 0.9, the smallest bias 
of the estimates and the best coverage were also obtained for the mobility matrix. Given 
that, in this case, we are setting a large value for the spatial parameter, more relevance is 
given to this structure. However, when β = −0.5 and ρ = 0.9, the models using the con-
tiguity and the mobility matrix produce similar values for the bias of the estimations and 
the coverage for the contiguity matrix highly improves, meaning that, for this specifc 
setting, the spatial structure is not so clearly defned. 

The sensitivity of the results to small variations in the parameter ρ is due to the 
absence of additional covariates or effects in the model, making, therefore, the spatial 
autoregressive term the primary source of variation. The corresponding result would be 
that even minor adjustments to ρ can signifcantly infuence the dynamics of the overall 
model and the resulting estimates. 

Finally, from the results included in Table 1, for the precision parameter τ , no sig-
nifcant changes were observed in the bias of the estimations or in the coverage when 
changing this parameter’s value from 5 to 15. 

Regarding the predictive accuracy of the models, we can evaluate it by computing 
the mean squared predictive error (MSPE) of the simulated rates for each simulated˜ ° 

(s) (s)dataset MSPEs = ∑i
n 
=1(ri − r̂i )2/n (Carroll et al., 2015). In this way, we can obtain 

an average for the model ftted for each of the 250 datasets generated for each scenario, 
so that MSPE = ∑S

s=1(MSPEs)/S. Note that the models with the lowest values of the 
MSPE would be considered as the best ftting ones. The results obtained are included 
in Table 2, where we can see that, in general, the MSPE is small in every scenario, but 
the smallest values are mostly obtained for the models in which the mobility matrix was 
used to compute the spatial lag of the log-rates. 

Moreover, we have counted the number of times that the information criteria values 
were smaller in each case so that we can check how many times the “correct” model 
was selected as the best ftting one. Most of the times, with a very few exceptions, the 
model where the mobility matrix was used, was selected with the smallest WAIC and 
CPO values. This indicates that we can indeed, based on the model selection criteria, 
select the underlying true neighbourhood matrix. These results are included in Table S1 
in the supplementary material. 

From the results obtained in the simulation study, we can conclude that it is essential 
to evaluate whether the spatial structure used in a study is the most adequate one. For 
most of the spatial modelling applications, the spatial weights matrix employed to de-
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Table 2. Average of the MSPE values obtained from the models using different weights matrices, 
ftted to the simulated datasets. 

True values Mobility Contiguity Inverse distance BYM2 Leroux 

β = −2, ρ = 0.5, τ = 15 2.323e-06 5.173e-05 5.601e-05 1.977e-05 1.973e-05 

β = −2,ρ = 0.5, τ = 5 9.659e-07 2.994e-05 3.190e-05 1.092e-05 1.042e-05 

β = −0.5,ρ = 0.5,τ = 5 1.765e-06 1.223e-05 1.212e-05 5.402e-06 5.622e-06 

β = −0.5,ρ = 0.5,τ = 15 2.292e-06 4.135e-05 4.204e-05 1.696e-05 1.724e-05 

β = −2,ρ = 0.2,τ = 15 2.764e-06 1.793e-05 1.796e-05 1.555e-05 1.554e-05 

β = −2,ρ = 0.2,τ = 5 1.683e-06 1.004e-05 1.005e-05 8.350e-05 8.402e-05 

β = −0.5, ρ = 0.2, τ = 5 3.518e-06 6.521e-06 6.540e-06 5.322e-06 5.516e-06 

β = −0.5,ρ = 0.2, τ = 15 5.497e-06 1.594e-05 1.598e-05 1.291e-06 1.336e-06 

β = −2,ρ = 0.9,τ = 15 6.441e-06 9.049e-06 9.917e-06 1.735e-05 1.852e-05 

β = −2,ρ = 0.9,τ = 5 4.254e-06 9.247e-06 9.594e-06 1.714e-05 2.275e-06 

β = −0.5,ρ = 0.9,τ = 5 8.752e-07 5.207e-05 4.737e-05 2.345e-05 6.582e-06 

β = −0.5,ρ = 0.9,τ = 15 2.551e-06 1.071e-04 9.862e-05 1.788e-05 1.482e-05 

scribe the spatial structure of the data under study is the one following the contiguity of 
order one criterion. However, we believe it has been clearly shown that this is not always 
necessarily the best choice. 

In this specifc study, it has been shown that when the mobility matrix is the under-
lying structure, and the model is misspecifed, in general, the bias of the estimations is 
larger than the bias obtained for the model using the mobility matrix. Moreover, infor-
mation criteria values such as the WAIC and CPO and, also predictive accuracy measures 
such as the MSPE, have favoured the correctly specifed model, selecting it as the best 
ftting one in almost all cases. Overall, the simulation study illustrates the fact that our 
proposed model effectively identifes the correct spatial structure when properly speci-
fed. However, this does not imply that our model is the correct or best model under a 
given setting, which was not the original purpose in the simulation study. 

4. Illustration of methodology 

4.1. Data Exploration 

We investigate the spatial distribution of COVID-19 from September 2020 until January 
2021 amongst the Flemish municipalities. Figure 1 shows the observed incidence of 
COVID-19 per 100,000 inhabitants in Flanders’ municipalities in the time period con-
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sidered, which was the time of the second wave in Belgium. It can be observed that 
not all municipalities presented the same impact in the second COVID-19 wave. In this 
study, we wish to assess whether the spatial correlation pattern of the incidence during 
the second wave of the disease was linked to any social demographics. 

Figure 1. Spatial distribution of the incidence of COVID-19 per 100,000 inhabitants in Flanders’ 
municipalities from 2020-09-01 to 2021-01-31. 

The data under analysis includes information on the 300 municipalities of Flanders 
in Belgium, which is available at the website of the Belgian Institute for Public Health 
(Sciensano) (https://epistat.wiv-isp.be/covid/). Table 3 includes some descriptive statis-
tics for the variables available across municipalities. The outcome of interest is the 
number of confrmed COVID-cases from 2020-09-01 to 2021-01-11, summarized by 
the variable N.cases. The population size in the municipality is denoted as P, and 
incidence is the number of COVID-19 cases in this time period per 100,000 inhabi-
tants. There are also two additional variables available which can be considered as prox-
ies for the socio-economic status and demography of the municipality. These are the 
percentage of households with a discount on the electricity meter (budgetmeters) 
and the percentage of single-parent households (single house). 

4.2. Model Estimates 

The COVID-19 incidence map in Figure 1 suggests the presence of spatial autocor-
relation in the data, as municipalities with similar values of COVID-19 incidence are 
grouped together in space. Therefore, in order to be able to characterize the spatial pat-
tern of the second wave of COVID-19 in the data under study, we will further analyse 
these data by implementing spatial models that account for the spatial dependence. In 
addition, since we have seen the importance of testing different spatial structures for the 

https://epistat.wiv-isp.be/covid/
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Table 3. Descriptive statistics for the variables available across municipalities 

Median Mean SD Min. Max. 

N.cases 544.000 801.243 1570.136 1.000 24387.000 
P 15036.500 22097.143 36156.404 79.000 529247.000 
incidence 3358.868 3564.184 1235.740 1265.823 8023.070 
single house 7.885 8.021 1.245 5.300 15.300 
budgetmeters 1.125 1.229 0.678 0.000 6.860 

weights matrix with the simulation study carried out in the previous section, here we 
will also explore different possible choices for the spatial weights matrix to be included 
in the ftted models. 

We ft both the spatial conditional normal Poisson model in equation (1) (Section 2.1) 
and the proposed geometric mean spatial conditional normal Poisson model in equation 
(2) (Section 2.2). As one of our objectives is to be able to select the spatial structure 
that best accommodates the spatial underlying process in the data, we use the different 
weights matrices described in Section 2.3, and compare the ftting of the different models 
by using their WAIC and CPO values. Note that, in this specifc application, we do not 
include any covariates in the linear predictor, as we focus on the spatial modelling by 
means of the autoregressive terms and on the comparison of the performance of such 
models. 

We believe it is important to mention the fact that, at the beginning of this research, 
the variables available were included in the model as covariates. However, the results 
obtained suggested that they did not offer any improvements in models’ ftting in terms 
of information criteria. Therefore, in this specifc study, we decided to only employ them 
when computing the proposed weights matrices based on similarities. It should also be 
noted that, in this study, we do not aim to identify any risk factor in the spreading of the 
infection, but to investigate the spatial correlation that may exist in the data and fnd the 
structures that best accommodate it. 

The results obtained for the ftting of these models are included in Tables 4 and 5, 
which were ftted by considering ten different options for the weights matrix. First, we 
have used the spatial weights matrices based on the adjacency among municipalities 
(contiguity of frst and third order). Second, weights were based on the distance among 
the centroids of the municipalities (inverse distance, negative exponential distance and 
distance band method). Third, the weights matrices were based on the product between 
covariate differences and traditional spatial weights, as proposed in Section 2.3. For 
these similarity matrices, the spatial weights matrices considered are the ones based on 
contiguity or frst order, and that based on the distance band. The variables used to mea-
sure whether municipalities have a similar socio-economic status are single house 
and budgetmeters. Finally, the mobility matrix was also considered. The heatmaps 
for these matrices are included in Figure S1 in the supplementary material, where we 
can clearly see the different structures they represent. 



        

  

 

 

 

 

 

 

Mabel Morales-Otero, Christel Faes and Vicente N´nez-Anton´u˜ 107 

Table 4. Results obtained after ftting the spatial conditional normal Poisson models to the 
COVID-19 incidence data in Flanders, for the different weights matrices considered. 

Weights matrix β̂ ρ̂ τ̂ 

Contiguity of order 1 WAIC = 2947.7 Mean -4.378 27.928 27.830 
CPO = 1807.4 SD (0.041) (1.121) (2.440) 

95% CI (-4.459,-4.297) (25.728,30.129) (23.287,32.868) 

Contiguity of order 3 WAIC = 2942.7 Mean -4.425 29.220 18.100 
CPO = 1868.4 SD (0.060) (1.637) (1.542) 

95% CI (-4.542,-4.307) (26.006,32.434) (15.217,21.271) 

Inverse distance WAIC = 2941.2 Mean -5.649 63.083 19.319 
CPO = 1859.3 SD (0.120) (3.333) (1.646) 

95% CI (-5.885,-5.413) (56.538,69.629) (16.242,22.705) 

Negative exponential WAIC = 2941.4 Mean -6.006 73.132 12.660 
CPO = 1921.9 SD (0.221) (6.152) (1.062) 

95% CI (-6.440,-5.573) (61.049,85.214) (10.672,14.843) 

Distance band WAIC = 2938.4 Mean -4.514 31.480 24.663 
CPO = 1822.6 SD (0.051) (1.370) (2.120) 

95% CI (-4.613,-4.415) (28.790,34.172) (20.706,29.031) 

W ◦ D single house and 
Contiguity of order 1 

W ◦ D single house and 
Distance band 

W ◦ D budgetmeters and 
Contiguity of order 1 

WAIC = 2946.9 
CPO = 1813.9 

WAIC = 2940.3 
CPO = 1811.3 

WAIC = 2949.4 
CPO = 1814.6 

Mean 
SD 

95% CI 

Mean 
SD 

95% CI 

Mean 
SD 

95% CI 

-4.349 27.121 26.956 
(0.041) (1.112) (2.355) 

(-4.430,-4.268) (24.938,29.305) (22.567,31.814) 

-4.490 30.970 27.609 
(0.046) (1.246) (2.396) 

(-4.580,-4.400) (28.524,33.418) (23.142,32.550) 

-4.360 27.500 29.005 
(0.040) (1.074) (2.556) 

(-4.438,-4.282) (25.392,29.609) (24.247,34.284) 

W ◦ D budgetmeters and 
Distance band 

WAIC = 2938.7 
CPO = 1813.9 

Mean 
SD 

95% CI 

-4.513 31.657 27.009 
(0.047) (1.293) (2.336) 

(-4.606,-4.420) (29.120,34.196) (22.652,31.823) 

Mobility WAIC = 2972.6 
CPO = 1849.2 

Mean 
SD 

95% CI 

-4.270 25.113 22.010 
(0.045) (1.213) (1.974) 

(-4.357,-4.182) (22.726,27.491) (18.342,26.093) 

When comparing the models’ ft related to the different weights matrices included in 
Table 4, it can be seen that parameter estimates can differ considerably. The estimated 
value for the autoregressive parameter ρ is large and statistically signifcant, according to 
its 95% credible interval, in all models, an indication that there is a clear sign for the ex-
istence of spatial autocorrelation. Interpretation of the value of the estimated parameter 
is diffcult, however. 
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Table 5. Results obtained after ftting the geometric mean spatial conditional normal Poisson 
models to the COVID-19 incidence data in Flanders, for the different weights matrices consid-
ered. 

Weights matrix β̂ ρ̂ τ̂ 

Contiguity of order 1 WAIC = 2945.1 Mean -0.786 0.770 22.488 
CPO = 1920.6 SD (0.122) (0.036) (1.938) 

95% CI (-1.027,-0.546) (0.699,0.840) (18.871,26.479) 

Contiguity of order 3 WAIC = 2942.1 Mean -0.885 0.740 15.724 
CPO = 1918.5 SD (0.162) (0.048) (1.331) 

95% CI (-1.202,-0.567) (0.647,0.834) (13.235,18.459) 

Inverse distance WAIC = 2941 
CPO = 1857.8 

Negative exponential WAIC = 2941.4 
CPO = 1922.7 

Distance band WAIC = 2938.6 
CPO = 1820.9 

Mean 3.753 2.108 19.144 
SD (0.380) (0.112) (1.630) 

95% CI (3.006,4.500) (1.887,2.328) (16.097,22.494) 

Mean 4.919 2.451 12.709 
SD (0.695) (0.205) (1.067) 

95% CI (3.554,6.283) (2.049,2.854) (10.712,14.900) 

Mean 0.241 1.071 25.000 
SD (0.157) (0.046) (2.151) 

95% CI (-0.067,0.550) (0.980,1.161) (20.985,29.432) 

W ◦ D single house and 
Contiguity of order 1 

W ◦ D single house and 
Distance band 

W ◦ D budgetmeters and 
Contiguity of order 1 

WAIC = 2945.3 
CPO = 1905.7 

WAIC = 2940.4 
CPO = 1806.3 

WAIC = 2946.3 
CPO = 1928.9 

Mean 
SD 

95% CI 

Mean 
SD 

95% CI 

Mean 
SD 

95% CI 

-0.811 
(0.121) 

(-1.048,-0.573) 

0.216 
(0.144) 

(-0.066,0.498) 

-0.780 
(0.118) 

(-1.012,-0.549) 

0.762 22.535 
(0.036) (1.943) 

(0.692,0.832) (18.909,26.536) 

1.062 28.129 
(0.042) (2.445) 

(0.979,1.145) (23.571,33.170) 

0.773 23.622 
(0.035) (2.045) 

(0.702,0.839) (19.809,27.838) 

W ◦ D budgetmeters and WAIC = 2938.9 Mean 0.268 1.076 27.501 
Distance band CPO = 1812.3 SD (0.148) (0.043) (2.380) 

95% CI (-0.023,0.558) (0.991,1.162) (23.058,32.402) 

Mobility WAIC = 2960.6 Mean -1.766 0.482 14.842 
CPO = 1915.7 SD (0.115) (0.034) (1.275) 

95% CI (-1.993,-1.541) (0.416,0.548) (12.460,17.466) 

The information criteria values obtained (i.e., WAIC) for the ftting of these mod-
els indicate that the best ft for the models accounting only for contiguity or distance 
amongst municipalities is for the distance band spatial weights (WAIC = 2938.4). With 
regard to the predictive accuracy measure (i.e., CPO), the best ftting model is the one 
using the contiguity of order one criterion (CPO = 1807.4). As for the models taking into 
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account the similarity in socio-economic status, the combination of single house or 
budgetmeters and distance bands are the best ftting models (WAIC = 2940.3 and 
CPO = 1811.3, and WAIC = 2938.7 and CPO = 1813.9, respectively). 

For the model considering the mobility matrix, we can conclude that, according to 
the information and the predictive criteria, this model did not provide a good ft for the 
dataset under study. Unlike the simulation study, where the spatial pattern was explic-
itly constructed based on the mobility matrix and the models accurately identifed this 
structure, in this case, the mobility structure does not seem to be the underlying structure 
driving the spatial pattern of incidence rates in the dataset under study. 

Similar results are observed in Table 5, where the ftting of these models appears 
to be very similar, according to the WAIC and CPO values, to the ones reported in 
Table 4. Here, the models with the smallest values were the ones using the distance 
band weights matrix (WAIC = 2938.6 and CPO = 1820.9) and similarity matrix of the 
distance band and single house or budgetmeters (WAIC = 2940.4 and CPO = 
1806.3, and WAIC = 2938.9 and CPO = 1812.3, respectively). In these weights matrices, 
larger weights are specifed for municipalities that lie within the distance band and have 
similar values of these variables. Therefore, the ftting of these models suggests that this 
structure could be properly explaining the underlying spatial dependence, assuming that 
the variables considered represent the socio-economic or demographic characteristics of 
the population in these municipalities. 

Regarding the spatial autoregressive parameter ρ , here the spatial lag is also signif-
cant for all the ftted models, indicating that the spatial autocorrelation is being properly 
captured. However, we believe it is relevant to mention that, while this fnding provides 
some clear evidence that the autoregressive structure of the model is appropriate for cap-
turing the spatial autocorrelation present in the dataset under study, it does not provide 
any argument in favor of this being the best or the correct model. 

Moreover, the interpretation of parameter ρ can be useful in order to quantify how 
much the spatial structure considered can infuence the resemblance of the incidence 
rate in a municipality to the geometric mean of the incidence rates of its neighbours. 
In the models where the distance band matrix was used, the parameter ρ has posterior 
mean approximately equal to 1, and, thus, in this setting, we fnd that the rate in a 
municipality is close to the geometric mean of the rates in the municipalities within 
the distance band. For the models where the specifed weights matrix was either the 
exponential or the inverse distance, the estimated values of ρ was approximately equal 
to two, suggesting that the rate in a municipality is the square of the geometric mean 
of the rates of its neighbours. For the remaining models, this parameter’s estimated 
value was smaller than one. For example, in the model with the mobility matrix, it was 
ρ̂ = 0.4823, suggesting that, for this connectivity structure, the rate in a municipality is 
approximately the squared root of the geometric mean of the rates of its neighbours. 

Figure 2 includes the maps of the predicted incidence obtained after ftting the geo-
metric mean spatial conditional normal Poisson models using the spatial weights matrix 
following the distance band criterion and the similarity spatial matrix combining the dif-
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(a) Predicted incidence obtained from the model using the spatial matrix fol-
lowing the distance band criterion, ftted to the COVID-19 data in Flanders. 

(b) Predicted incidence obtained from the model using the similarity spatial 
matrix combining the differences in the variable budgetmeters and the dis-
tance bands criterion, ftted to the COVID-19 data in Flanders. 

Figure 2. Predicted incidence obtained from some of the geometric mean spatial conditional 
normal Poisson models considered, ftted to the COVID-19 data in Flanders. 

ferences in the variable budgetmeters and the distance bands criterion, which were 
considered as the best ftting ones. Similar maps obtained for some of the other ftted 
models have been included in Figure S2 in the supplementary material. If we compare 
these maps with the observed incidence map shown in Figure 1, we can see that, in 
general, the predictions are quite accurate, as they are very similar to the observed inci-
dence. In addition, when compared to each other, we note that the predictions obtained 
differ only for a small number of municipalities. In addition, scatterplots of the observed 
versus the predicted rates, obtained from the ftting of these models are included in Fig-
ure S3 in the supplementary material, where it can be seen that the ftted models show 
high accuracy in the prediction of the incidence rates. 
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We can also check the distributional assumptions in the ftted models, which is a 
Poisson distribution, where the overdispersion is accommodated by means of the inclu-
sion of a random effect in the regression for the mean. This can be achieved by using 
the distribution check function from the R package inlatools (Onkelinx, 2019). 
Here, simulations are drawn from the model and the empirical cumulative distribution 
function (eCDF) is computed for the observed response and for the simulated data, so 
that they can be compared. 

Figure 3 includes the plots which illustrate these comparison results for two of the 
ftted models. In each fgure, the black line is the result of dividing the eCDF of the 
observed data by the median of the eCDF’s of the simulated datasets, and the grey bands 
represent the 95% credible intervals of the simulated data. In addition, the dotted hori-
zontal line placed at 100% indicates where the ratio of the eCDF’s is equal to one. If the 
eCDF is inside the credible intervals, which is the case for all of the models ftted here, 
the assumed distribution in the model seems to be a plausible one. Moreover, given that 
the eCDF is quite close to the reference line, these results suggest that the data is well 
modelled with this distribution. 

(a) Geometric mean model where the spatial 
matrix follows the distance band criterion. 

(b) Geometric mean model for the similar-
ity spatial weights matrix combining distance 
band and the variable budgetmeters. 

Figure 3. Distribution check for some of the ftted models. 

Additionally, Figure 4 shows the marginal posterior distribution of the parameters 
estimated from some of the ftted models, where it can be verifed that the normality 
assumption holds. Distribution checks and the posterior marginals for the estimated pa-
rameters in the geometric mean models corresponding to the spatial weights matrix fol-
lowing the contiguity of order one criterion and the mobility matrix have been included 
in Figures S4 and S5 in the supplementary material. 

After examining the results obtained in this section, we could conclude that, on the 
one hand, with the proposed model we present an appealing interpretation of the spa-
tial parameter, given by the geometric mean of the incidence rates. We have shown 
how this interpretation can change for the different ftted models, indicating how much 
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the spatial structure considered explains the spatial autocorrelation by means of the ge-
ometric mean of the rates in the neighbouring municipalities. On the other hand, by 
examining different weights matrices, we can have a better idea of the underlying spatial 
dependence structure of the data. When the similarity matrices based on the distance 
band were used, the information criteria values were similar to the model considering 
the traditional distance band matrix. Therefore, taking into account that they provide 
similar predictions and similar ft, we believe that, for the specifc data set considered, 
this weights matrix could represent a proper choice for modelling the spatial underlying 
structure of the data. 

Finally, we would like to briefy mention that the computation time needed for ftting 
the models in this section is of approximately one second for each one of the ftted 
models. 

(a) Geometric mean model where the spatial matrix follows the distance band 
criterion. 

(b) Geometric mean model for the similarity spatial weights matrix combining 
distance band and the variable budgetmeters. 

Figure 4. Posterior densities from the parameters estimated for some of the ftted models. 

4.3. Comparison to the BYM2 and Leroux spatial models 

In this section, we will ft the BYM2 and Leroux spatial models to the COVID-19 data 
in Flanders. Additional details about these models have been included in Section 8 in the 
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supplementary material. We should stress here that one of our main goals in this work 
is to present the geometric mean proposal as a new extension of the spatial conditional 
Poisson model in Cepeda-Cuervo et al. (2018). In these models, the interpretation of 
the spatial parameters is different from that of the BYM2 or the Leroux models. Fur-
thermore, the spatial conditional and the geometric mean models offer the possibility 
of specifying any weights matrix in a straightforward way, as it is used for computing a 
spatial lag. In our view, this feature makes these models more appealing for investigating 
different spatial structures, which is another one of our goals in this work. In the case of 
the BYM2 or the Leroux models, this is not straightforward due to its limitations, where 
the assumed spatial structure needs to be symmetric, which is not the case, for example, 
for the mobility matrix we have employed before. Although it is known that any matrix 
can be symmetrized, this would include carrying out a previous process, which is not 
required when ftting our proposed models. 

Nevertheless, we believe it can be useful to compare the performance of the pro-
posed methods with that of the BYM2 and Leroux models, often employed in disease 
mapping applications. Therefore, in order to specify the BYM2, we consider the model 
in equation (S3) in the supplementary material, where, in order to specify the penal-
ized complexity priors and following Simpson et al. (2017), for the precision parame-
ter τs we assume that Prob(1/ 

√
τs > 0.2/31) = 0.01 and, for the mixing parameter φs, 

Prob(φs < 0.5) = 2/3. Additionally, for the Leroux model, we consider the formulation 
in equation (S4) in the supplementary material. In this case, the prior for the precision 
parameter τu is a noninformative Gamma distribution (i.e., τu ∼ G(1 × 10−4 ,1 × 10−4)) 
and the prior for the spatial parameter φu is a uniform distribution over the unit interval 
(φu ∼ U(0,1)) (Lee, 2013). For the intercept, we assume a noninformative normal prior 
distribution (i.e., β ∼ N(0,1 × 105)). Note that, in the BYM2 and Leroux models, the 
spatial weights matrix is defned based on contiguity of order one. The results obtained 
after ftting these models to the COVID-19 data in Flanders are included in Table 6 and 
Table 7. 

Table 6. Results obtained after ftting the BYM2 model to the COVID-19 incidence data in 
Flanders. 

β̂ -3.3924 0.004 (-3.400,-3.385) 
τ̂s 12.057 1.131 (9.885,14.318) 
φ̂ s 0.976 0.020 (0.923,0.998) 

WAIC = 2932.9 CPO = 1802.6 

Mean SD 95% CI 

Results reported in the previous section indicate that the smallest WAIC resulted 
for the model using the distance band criterion (WAIC = 2938.6) and the smallest CPO 
was obtained for the geometric mean model using the similarity matrix of the distance 
band and budgetmeter (CPO = 1806.3). As for the BYM2 model, we can see that 
the WAIC and CPO values obtained are slightly lower than those obtained for the pre-
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Table 7. Results obtained after ftting the Leroux spatial model to the COVID-19 incidence data 
in Flanders. 

Mean SD 95% CI 

β̂ -3.189 0.258 (-3.590,-2.544) 
τ̂u 6.907 0.603 (5.777,8.150) 
φ̂  u 0.989 0.017 (0.942,0.999) 

WAIC = 2954.8 CPO = 1958.7 

vious models. In contrast, the Leroux model yielded larger information criteria values 
when compared to both the spatial conditional and BYM2 models, suggesting a weaker 
goodness of ft to the data under study. 

In addition, the value obtained for the mixing parameter in the BYM2 model, φ̂ s = 
0.976, suggests that more than 97% of the variability in the data is being explained by 
the spatially structured effect. Similarly, the estimated spatial parameter in the Leroux 
model, φ̂ u = 0.989, indicates that most of the variability in the data is explained by the 
spatial component, which is consistent with the BYM2 estimate of φs. 

Regarding the predictive accuracy of these models, Figure 5 includes the maps of the 
predicted incidence obtained from their ftting, where we can see that the predictions are 
very accurate when compared to the map of the observed incidence in Figure 1, and also 
very similar to the ones obtained in the previous section for our proposed methods (see 
Figure 2). The scatterplots of the observed versus the predicted incidence rates are also 
included in Figure S3(i) in the supplementary material, showing some issues in some of 
the municipalities. 

The computation time needed to ft the BYM2 model was of approximately ten sec-
onds, while the Leroux model required fve seconds. In contrast, for the spatial condi-
tional and geometric mean models ftted in Section 4.2, the runtime was of about one 
second for each one of the ftted models. Moreover, in the simulation study carried out 
in Section 3, we ftted 250 models for each one of the 12 scenarios. When ftting the Ler-
oux and the BYM2 models to these datasets, the runtime increased by a factor of fve and 
ten, respectively, when compared to the geometric mean model. In other words, ftting 
the Leroux model for the entire simulation study would require more than 4 hours, while 
the BYM2 model would take about 8 hours, compared to the 50 minutes required for 
the geometric mean model. Therefore, in our view, this is an important advantage worth 
mentioning for our proposed models over the BYM2 and the Leroux models, which are 
commonly used in this area of research. 

Despite the fact that the information criteria values favoured the BYM2 model and 
that its predictive accuracy is similar to the one from the geometric mean model, we 
restate our goal here of presenting the geometric mean proposal, which can be viewed 
as an alternative to the Leroux, BYM and BYM2 models, and to investigate the weights 
matrices which best refect the spatial underlying process. 
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(a) Predicted incidence obtained from the BYM2 model, ftted to the COVID-19 data in Flanders. 

Figure 5. Predicted incidence obtained from the BYM2 and Leroux models, ftted to the COVID-
19 data in Flanders. 
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(b) Predicted incidence obtained from the Leroux model, ftted to the COVID-19 data in Flanders. 

Figure 5. Predicted incidence obtained from the BYM2 and Leroux models, ftted to the COVID-
19 data in Flanders (Continued). 

There are situations where the spatial conditional models may offer a better ft than 
the Leroux, BYM and BYM2 models, or viceversa. We believe that the choice of the 
model to ft should depend on the specifc objective of the study. For example, Morales-
Otero and Nú ̃  on (2021) reported that, given by the information criteria values nez-Ant´ 
obtained, the spatial conditional and the BYM and BYM2 models offered a very similar 
ftting to the infant mortality data they studied. In addition, in Morales-Otero, Gómez-
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Rubio and Núñez-Antón (2022), the spatial conditional models were employed in order 
to illustrate a new ftting approach in INLA. 

5. Discussion 

In this work, we have studied the geographical spread of COVID-19 cases in the munici-
palities of Flanders in Belgium during the period going from September 2020 to January 
2021. In order to be able to ft these data, we have considered the Bayesian spatial con-
ditional model proposals (Cepeda-Cuervo et al., 2018), which assume the incidence of 
cases in a municipality is conditional on the incidence of cases in neighbouring munic-
ipalities. These models offer a great fexibility and also the possibility that considering 
different weights matrices can be done in a direct and very simple way. 

We have proposed a geometric mean spatial conditional model, where the logarithm 
of the rates is employed for computing the spatial lag component. This model offers 
an interpretation of the spatial parameter ρ based on the geometric mean, representing 
how the incidence rate in one municipality resembles the geometric mean of the rates in 
its neighbours. For the spatial weights matrix used in these models, we have proposed 
alternative specifcations based on a combination of the similarity of a certain variable 
in the different locations and the distance between these municipalities. In addition, 
we have also considered the connectivity structure given by the mobility of individuals 
among the municipalities under study. 

In order to further assess the performance of the proposed methods when the corre-
lation among the different municipalities under study is given by a connectivity pattern, 
such as, for example, the mobility matrix, we have carried out a simulation study where 
we induce correlation in the response variable based on this structure. In this study, we 
have been able to appropriately verify that the models are able to identify the correct 
spatial structure for most of the cases under study. 

In the application to the COVID-19 data in Flanders, we have compared these pro-
posed models with the ones in Cepeda-Cuervo et al. (2018) fnding that our proposal 
provides a similar ft, but offers a particular and straightforward interpretation within 
the context of the specifc dataset under analysis. We have ftted these models by using 
different defnitions for the weights matrices employed to compute the spatial lag, such 
as the classical ways of accounting for spatial autocorrelation based on contiguity and 
distance, as well as the similarities weights matrices we proposed as alternatives. In ad-
dition, we have also studied the use of the mobility matrix in modelling the COVID-19 
incidence data in Flanders, which is given by the proportion of time individuals from 
one municipality spent in a different one. 

In order to provide a comparison of the proposed models with other commonly used 
models employed in disease mapping applications, we have also ftted the BYM2 and 
Leroux spatial models to the dataset under study. Results indicate that the BYM2 model 
provides a similar ft based on information criteria and demonstrates a comparable pre-
dictive accuracy to that of our proposed model. However, it may be the case that the 
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dataset under study may not be the best example to fully justify the need for the geo-
metric mean spatial conditional model. Moreover, we believe it is important to clarify 
that this study initially began as an investigation into whether the mobility connectivity 
structure could explain the spatial pattern of COVID-19 incidence across municipalities 
in Flanders. Addressing this question required fexible spatial models, such as the spatial 
conditional models proposed by Morales-Otero and Núñez-Antón (2021), which moti-
vated the use of this approach in our analysis. Subsequently, we developed the geometric 
mean spatial conditional model, adjusting the primary focus of this work to introducing 
it as a fexible alternative for capturing spatial dependencies and making it possible to 
specify different spatial structures. 

The BYM2 model is well established in this area of research but, at the same time, 
we also believe that our model provides interpretational advantages, computational sim-
plicity, and the fexibility to easily test for different spatial structures. For example, the 
computation time required to estimate a geometric mean model is ten and fve times 
shorter, respectively, than the one needed for the BYM2 or Leroux models. We consider 
this to be a signifcant advantage of our proposed model, particularly when researchers 
need to perform simulation studies, such as the one presented in Section 3, where a large 
number of models must be effciently ftted. Nonetheless, we recognize that further ap-
plications are necessary to fully evaluate the benefts and limitations of the geometric 
mean model in different contexts, and we intend to continue exploring this model pro-
posal structure in our future research. 

In any case, overall results suggest a strong spatial correlation in the dataset under 
study, which is best explained by the distance band spatial weights matrix. This im-
plies that, for the data under study, the underlying spatial process is well explained and 
modelled by this spatial structure. 

Finally, we believe it it worth mentioning that, in this work, we focus on the analysis 
of the data corresponding to the time period of the COVID-19 second wave in Flanders, 
and we have tried to characterize the overall spatial pattern believed to be present in 
this wave. Our main interest for this specifc application does not include transmission. 
However, for future research we are also interested in performing comparison with the 
spatial pattern of additional COVID-19 waves in the area under study, by being able to 
propose a spatio-temporal approach, which is out of the scope of this paper. We have 
already developed spatio-temporal extensions of the spatial conditional models and spe-
cifc proposals are in the process of being fnalized, so that they are part of a different 
manuscript to be later submitted for possible publication. Moreover, one of our objec-
tives is to be able to apply these proposals to the comparisons of the different waves in 
the dataset we have analysed here. 
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