Skip to main content

Last year's top ten most cited papers

Top ten most cited papers in 2021 according to Web of Science (WOS)

  • Abstract: P-splines first appeared in the limelight twenty years ago. Since then they have become popular in applications and in theoretical work. The combination of a rich B-spline basis and a simple difference penalty lends itself well to a variety of generalizations, because it is based on regression. In effect, P-splines allow the building of a “backbone” for the “mixing and matching” of a variety of additive smooth structure components, while inviting all sorts of extensions: varying-coefficient effects, signal (functional) regressors, two-dimensional surfaces, non-normal responses, quantile (expectile) modelling, among others. Strong connections with mixed models and Bayesian analysis have been established. We give an overview of many of the central developments during the first two decades of P-splines.

    Keywords: B-splines, penalty, additive model, mixed model, multidimensional smoothing.

    Pages: 149–186

    DOI: 10.2436/20.8080.02.25

    Vol 39 (2) 2015

  • Abstract: Based on progressively Type-II censored samples, this paper deals with inference for the stress-strength reliability R = P(Y < X) when X and Y are two independent Weibull distributions with different scale parameters, but having the same shape parameter. The maximum likelihood estimator, and the approximate maximum likelihood estimator of R are obtained. Different confidence intervals are presented. The Bayes estimator of R and the corresponding credible interval using the Gibbs sampling technique are also proposed. Further, we consider the estimation of R when the same shape parameter is known. The results for exponential and Rayleigh distributions can be obtained as special cases with different scale parameters. Analysis of a real data set as well a Monte Carlo simulation have been presented for illustrative purposes.

    Keywords: Maximum likelihood estimator, Approximate maximum likelihood estimator, Bootstrap confidence interval, Bayesian estimation, Metropolis-Hasting method, Progressive Type-II censoring.

    Pages: 103–124

    Vol 35 (2) 2011

  • Abstract: Social polices are designed using information collected in surveys; such as the Catalan Time Use survey. Accurate comparisons of time use data among population groups are commonly analysed using statistical methods. The total daily time expended on different activities by a single person is equal to 24 hours. Because this type of data are compositional, its sample space has particular properties that statistical methods should respect. The critical points required to interpret differences between groups are provided and described in terms of log-ratio methods. These techniques facilitate the interpretation of the relative differences detected in multivariate and univariate analysis.

    Keywords: Log-ratio transformations, MANOVA, perturbation, simplex, subcomposition.

    Pages: 231–252

    DOI: 10.2436/20.8080.02.28

    Vol 39 (2) 2015

  • Abstract: In this paper, a goodness-of-fit test for normality based on the comparison of the theoretical and empirical distributions is proposed. Critical values are obtained via Monte Carlo for several sample sizes and different significance levels.We study and compare the power of forty selected normality tests for a wide collection of alternative distributions. The new proposal is compared to some traditional test statistics, such as Kolmogorov-Smirnov, Kuiper, Cramér-von Mises, Anderson-Darling, Pearson Chi-square, Shapiro-Wilk, Shapiro-Francia, Jarque-Bera, SJ, Robust Jarque-Bera, and also to entropy-based test statistics. From the simulation study results it is concluded that the best performance against asymmetric alternatives with support on the whole real line and alternative distributions with support on the positive real line is achieved by the new test. Other findings derived from the simulation study are that SJ and Robust Jarque-Bera tests are the most powerful ones for symmetric alternatives with support on the whole real line, whereas entropy-based tests are preferable for alternatives with support on the unit interval.

    Keywords: Empirical distribution function, entropy estimator, goodness-of-fit tests, Monte Carlo simulation, Robust Jarque-Bera test, Shapiro-Francia test, SJ test, test for normality.

    Pages: 55–88

    DOI: 10.2436/20.8080.02.35

    Vol 40 (1) 2016

  • Abstract: Since its appearance in the 1990s, horizontal collaboration (HC) practices have revealed themselves as catalyzers for optimizing the distribution of goods in freight transport logistics. After introducing the main concepts related to HC, this paper offers a literature review on the topic and provides a classification of best practices in HC. Then, the paper analyses the main benefits and optimization challenges associated with the use of HC at the strategic, tactical, and operational levels. Emerging trends such as the concept of ‘green’ or environmentally-friendly HC in freight transport logistics are also introduced. Finally, the paper discusses the need of using hybrid optimization methods, such as simheuristics and learnheuristics, in solving some of the previously identified challenges in real-life scenarios dominated by uncertainty and dynamic conditions.

    Keywords: Horizontal collaboration, freight transport, sustainable logistics, supply chain management, combinatorial optimization.

    Pages: 393–414

    DOI: 10.2436/20.8080.02.65

    Vol 411 (2) 2017

  • Abstract: This paper aims to provide a comprehensive review on Markovian arrival processes (MAPs), which constitute a rich class of point processes used extensively in stochastic modelling. Our starting point is the versatile process introduced by Neuts (1979) which, under some simplified notation, was coined as the batch Markovian arrival process (BMAP). On the one hand, a general point process can be approximated by appropriate MAPs and, on the other hand, the MAPs provide a versatile, yet tractable option for modelling a bursty flow by preserving the Markovian formalism. While a number of well-known arrival processes are subsumed under a BMAP as special cases, the literature also shows generalizations to model arrival streams with marks, nonhomogeneous settings or even spatial arrivals. We survey on the main aspects of the BMAP, discuss on some of its variants and generalizations, and give a few new results in the context of a recent state-dependent extension.

    Keywords: Markovian arrival process, batch arrivals, marked process, phase-type distribution, BSDE approach

    Pages: 101–144

    Vol 34 (2) 2010

  • Abstract: Average incomes and poverty proportions are additive parameters obtained as averages of a given function of an income variable. As the variable income has an asymmetric distribution, it is not properly modelled via normal distributions. When dealing with this type of variable, a first option is to apply transformations that approximate normality. A second option is to use nonsymmetric distributions from the exponential family. This paper proposes unit-level generalized linear mixed models for modelling asymmetric positive variables and for deriving three types of predictors of small area additive parameters, called empirical best, marginal and plug-in. The parameters of the introduced model are estimated by applying the maximum likelihood method to the Laplace approximation of the likelihood. The mean squared errors of the predictors are estimated by parametric bootstrap. The introduced methodology is applied and illustrated under unit-level gamma mixed models. Some simulation experiments are carried out to study the behaviour of the fitting algorithm, the small area predictors and the bootstrap estimator of the mean squared errors. By using data of the Spanish living condition survey of 2013, an application to the estimation of average incomes and poverty proportions in counties of the region of Valencia is given.

    Keywords: Average income, poverty proportion, generalized linear mixed models, empirical best predictor, mean squared error, bootstrap

    Pages: 3–38

    DOI: 10.2436/20.8080.02.93

    Vol 44 (1) 2020

  • Abstract: This article is directed at the problem of reliability estimation using ranked set sampling. A nonparametric estimator based on kernel density estimation is developed. The estimator is shown to be superior to its analog in simple random sampling. Monte Carlo simulations are employed to assess performance of the proposed estimator. Two real data sets are analysed for illustration.

    Keywords: Bandwidth selection, Judgment ranking, Stress-strength model.

    Pages: 243– 266

    DOI: 10.2436/20.8080.02.43

    Vol 40 (2) 2016

  • Abstract: Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.

    Keywords: Vehicle routing problem, electric vehicles, green transport and logistics, smart cities, simheuristics, biased-randomized heuristics

    Pages: 3–24

    DOI: 10.2436/20.8080.02.77

    Vol 43 (1) 2019

  • Abstract: Many decision-making processes in our society involve NP-hard optimization problems. The largescale, dynamism, and uncertainty of these problems constrain the potential use of stand-alone optimization methods. The same applies for isolated simulation models, which do not have the potential to find optimal solutions in a combinatorial environment. This paper discusses the utilization of modelling and solving approaches based on the integration of simulation with metaheuristics. These ‘simheuristic’ algorithms, which constitute a natural extension of both metaheuristics and simulation techniques, should be used as a ‘first-resort’ method when addressing large-scale and NP-hard optimization problems under uncertainty –which is a frequent case in real-life applications. We outline the benefits and limitations of simheuristic algorithms, provide numerical experiments that validate our arguments, review some recent publications, and outline the best practices to consider during their design and implementation stages.

    Keywords: Simulation, metaheuristics, combinatorial optimization, simheuristics

    Pages: 311–334

    DOI: 10.2436/20.8080.02.104

    Vol 44 (2) 2020

  • Abstract: In this paper, the exponentiated discrete Weibull distribution is introduced. This new generalization of the discrete Weibull distribution can also be considered as a discrete analogue of the exponentiated Weibull distribution. A special case of this exponentiated discrete Weibull distribution defines a new generalization of the discrete Rayleigh distribution for the first time in the literature. In addition, discrete generalized exponential and geometric distributions are some special sub-models of the new distribution. Here, some basic distributional properties, moments, and order statistics of this new discrete distribution are studied. We will see that the hazard rate function can be in- creasing, decreasing, bathtub, and upside-down bathtub shaped. Estimation of the parameters is illustrated using the maximum likelihood method. The model with a real data set is also examined.

    Keywords: Discrete generalized exponential distribution, exponentiated discrete Weibull distribution, exponentiated Weibull distribution, geometric distribution, infinite divisibility, order statistics, resilience parameter family, stress-strength parameter.

    Pages: 127–146

    DOI: 10.2436/20.8080.02.24

    Vol 39 (1) 2015

  • Abstract: Our objective in this paper is to model the dynamics of respiratory syncytial virus in the region of Valencia (Spain) and analyse the effect of vaccination strategies from a health-economic point of view. Compartmental mathematical models based on differential equations are commonly used in epidemiology to both understand the underlying mechanisms that influence disease transmission and analyse the impact of vaccination programs. However, a recently proposed Bayesian stochastic susceptible-infected-recovered-susceptible model in discrete-time provided an improved and more natural description of disease dynamics. In this work, we propose an extension of that stochastic model that allows us to simulate and assess the effect of a vaccination strategy that consists on vaccinating a proportion of newborns.

    Keywords: Infectious diseases, respiratory syncytial virus (RSV), discrete-time epidemic model, stochastic compartmental model, Bayesian analysis, intervention strategies.

    Pages: 159– 176

    DOI: 10.2436/20.8080.02.56

    Vol 41 (1) 2017